--- base_model: - NousResearch/Meta-Llama-3-8B-Instruct - NousResearch/Meta-Llama-3-8B-Instruct - NousResearch/Meta-Llama-3-8B-Instruct tags: - merge - mergekit - lazymergekit - NousResearch/Meta-Llama-3-8B-Instruct --- # LittleLlama-3-8B-instruct-pass LittleLlama-3-8B-instruct-pass is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) * [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) * [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) ## 🧩 Configuration ```yaml slices: - sources: - model: NousResearch/Meta-Llama-3-8B-Instruct layer_range: [0, 8] - sources: - model: NousResearch/Meta-Llama-3-8B-Instruct layer_range: [14, 18] - sources: - model: NousResearch/Meta-Llama-3-8B-Instruct layer_range: [28, 32] merge_method: passthrough base_model: NousResearch/Meta-Llama-3-8B-Instruct dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "JoPmt/LittleLlama-3-8B-instruct-pass" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```