Jobiniah commited on
Commit
54caf1d
·
1 Parent(s): b7b87bb

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.37 +/- 0.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4baac7bdb9e577fbe2b81d4770b075cb778bcd77167153a0194a213d14fbc90
3
+ size 108251
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x796836548550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x79683653a640>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699056657669101600,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAEz18v7+BYb9Bylg/lED+v6ieJj+1lWu+I4iPPiSKQLnG1ts+twYdvrJcBcAylNG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiz4CvzLYSb7Cyss/ystcvgqSuj8XBB0/n7iTv9Y/cL3CpX+9ao88vzvH079vFce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAATPXy/v4Fhv0HKWD+pNOo/+LYlPxTpzj+UQP6/qJ4mP7WVa74Nqt0/ZQ3Lvp7e0z8jiI8+JIpAucbW2z6qV/Q+n7v5uug1wz63Bh2+slwFwDKU0b83wQ+/Sj2ivz8Quz6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-9.8530692e-01 -8.8088602e-01 8.4683615e-01]\n [-1.9863458e+00 6.5085840e-01 -2.3006327e-01]\n [ 2.8033552e-01 -1.8362008e-04 4.2937297e-01]\n [-1.5334593e-01 -2.0837827e+00 -1.6373351e+00]]",
34
+ "desired_goal": "[[-0.50876683 -0.19711378 1.5921252 ]\n [-0.21562114 1.4575818 0.61334366]\n [-1.1540717 -0.05865463 -0.06241394]\n [-0.7365633 -1.6545175 -1.5553416 ]]",
35
+ "observation": "[[-9.8530692e-01 -8.8088602e-01 8.4683615e-01 1.8297321e+00\n 6.4732313e-01 1.6164880e+00]\n [-1.9863458e+00 6.5085840e-01 -2.3006327e-01 1.7317520e+00\n -3.9658657e-01 1.6552312e+00]\n [ 2.8033552e-01 -1.8362008e-04 4.2937297e-01 4.7723132e-01\n -1.9053108e-03 3.8127065e-01]\n [-1.5334593e-01 -2.0837827e+00 -1.6373351e+00 -5.6154197e-01\n -1.2674954e+00 3.6535832e-01]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/+yFvdRp8r0xCBU+fCDPvBOCvjyeoMQ9H6rmu6+ppL0S+Is+F7/ZPcxoB71Rjpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.06539344 -0.11836591 0.14553906]\n [-0.02528404 0.02325538 0.09600948]\n [-0.00703932 -0.08040177 0.273377 ]\n [ 0.10632151 -0.03305893 0.2979608 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9ekJrtVrASMAWyUSwOMAXSUR0CopLViWmgrdX2UKGgGR7+hgssg+yJLaAdLAWgIR0CopQvcafjCdX2UKGgGR7+hDmbLEDQraAdLAWgIR0CopLxIjGDMdX2UKGgGR7/QhB7eEZivaAdLA2gIR0CopZRA0KqodX2UKGgGR7+1cqvvBrN4aAdLAmgIR0CopRSCWeH0dX2UKGgGR7/AP6sQumJnaAdLAmgIR0CopMTSLIgedX2UKGgGR7+4XrMTviLmaAdLAmgIR0CopZyxRl6JdX2UKGgGR7/GtlI3BHkMaAdLAmgIR0CopR1cD8tPdX2UKGgGR8AWx2zOX3QEaAdLMmgIR0CopWXtKIzndX2UKGgGR7/Pdt2s7uD0aAdLA2gIR0CopXKq4pc5dX2UKGgGR7/dL0SRKYiQaAdLBmgIR0CopOHFHavidX2UKGgGR7/kJQUHpr1vaAdLCGgIR0CopcaPjn3ddX2UKGgGR7/SN5MURFqjaAdLA2gIR0CopYTE74i5dX2UKGgGR7/MxRl6JIlMaAdLA2gIR0CopPSA6MisdX2UKGgGR7/jVYhdMTN/aAdLCGgIR0CopUjS5RTCdX2UKGgGR7/DpJPIn0CjaAdLAmgIR0CopP1+I/JOdX2UKGgGR7/N+5OJtSAIaAdLA2gIR0CopdU/W1+idX2UKGgGR7/Qp1A7gbZOaAdLA2gIR0CopZLncL0BdX2UKGgGR7+8ow22oegdaAdLAmgIR0CopeAVGkN4dX2UKGgGR7/A47Rv3rUtaAdLAmgIR0CopZ4QSSNgdX2UKGgGR7/aWf9P1tfpaAdLBGgIR0CopVzeoDPodX2UKGgGR7/O0UGmk30gaAdLA2gIR0CopQ1ZcLSedX2UKGgGR7/GlO45Lh73aAdLAmgIR0CopelOfukUdX2UKGgGR7/OtbLU1AJLaAdLA2gIR0Copat+TeO5dX2UKGgGR7+84m1IAfdRaAdLAmgIR0CopfSD7IkrdX2UKGgGR7/RJjDsMRYjaAdLA2gIR0CopgHQyAQQdX2UKGgGR7/SRT0g8r7PaAdLBGgIR0Copb95hSccdX2UKGgGR7/kFTNt65XmaAdLB2gIR0CopS5+YtxudX2UKGgGR7/DcyFfzBhyaAdLAmgIR0CopcpYs/Y8dX2UKGgGR7/AD2alUIcBaAdLAmgIR0CopTmgJ1JUdX2UKGgGR7/aLoOhCdBjaAdLBWgIR0CopVA+yJKrdX2UKGgGR7/GbGWD6FdtaAdLAmgIR0CopVhcAzYVdX2UKGgGR7/lVDrqt5lfaAdLCGgIR0Cope3LNfPYdX2UKGgGR7/RqMFUyYXwaAdLA2gIR0CopfxK6FufdX2UKGgGR7/lU+s5n13/aAdLB2gIR0CopXh/I8yOdX2UKGgGR7/m2epXIU8FaAdLCGgIR0Coph/c32mIdX2UKGgGR7/gYAKfFrEcaAdLBWgIR0CopY83Mpw0dX2UKGgGR7/TLfDUExIraAdLA2gIR0Copi9CVryldX2UKGgGR7/Xsmv4dp7DaAdLBGgIR0CopaKA8SwodX2UKGgGR7/Al+mWMS9NaAdLAmgIR0Copa0LMLWqdX2UKGgGR8AZZwJgLJCCaAdLMmgIR0CopksC1Z1WdX2UKGgGR8Aao7yQPqcFaAdLMmgIR0Copu4DcM3IdX2UKGgGR7/1zJuEVWS2aAdLDWgIR0Copodl2/zrdX2UKGgGR7/UyCnP3SKFaAdLA2gIR0Coppa37UG3dX2UKGgGR8AOFOIqLCN0aAdLJ2gIR0Copmbo0Q9SdX2UKGgGR7+5dX1anrIHaAdLAmgIR0CopnIiLVFydX2UKGgGR7/TpJf6XSjQaAdLA2gIR0Copn7lA/s3dX2UKGgGR8AYoN4JNTLoaAdLMmgIR0Copx82BJ7LdX2UKGgGR7/EAq/dqL0jaAdLAmgIR0Copye67NB4dX2UKGgGR7/Q642CNCJGaAdLA2gIR0CopzYPwuuidX2UKGgGR7+7UYsNDtw8aAdLAmgIR0Copz3dTHbRdX2UKGgGR8AC/NxEORT1aAdLGGgIR0CopwcpTdcjdX2UKGgGR7/Tr1M/QjUvaAdLA2gIR0Cop0zLfUF0dX2UKGgGR7+ouyu6mO2iaAdLAWgIR0Cop1CgCfYjdX2UKGgGR7/QI68xsVL0aAdLA2gIR0Cop18J2MbWdX2UKGgGR7/hGTkhib2EaAdLBmgIR0CopyIwVTJhdX2UKGgGR7+eSr5qM3qBaAdLAWgIR0CopyZ1eSjhdX2UKGgGR7/R8CPp6hQFaAdLA2gIR0Cop2wLeANHdX2UKGgGR7/WIKc/dIoWaAdLA2gIR0CopzYtHxz8dX2UKGgGR7/B4gzP8hs7aAdLAmgIR0Copz+HJtBOdX2UKGgGR7/iXgccU/OdaAdLB2gIR0Cop5Auyu6mdX2UKGgGR8AVX6l+EytWaAdLMmgIR0Cop9phfBvadX2UKGgGR7/Wwnpjc2zfaAdLBGgIR0Cop6RigCfZdX2UKGgGR7/Q+y7f51vEaAdLA2gIR0Cop+sglnh9dX2UKGgGR7/tb5dnkDISaAdLCmgIR0Cop2/EGZ/kdX2UKGgGR7/RMuOCGvfTaAdLA2gIR0Cop/hegL7XdX2UKGgGR7+8E3bVSXMRaAdLAmgIR0Cop3w/xDsudX2UKGgGR7/k6MJhOP/8aAdLCGgIR0Cop8nIp6QedX2UKGgGR7/ZSSeRPoFFaAdLBGgIR0Cop4zpX6qLdX2UKGgGR7/YJ9iMHbAUaAdLBmgIR0CoqBdm6GxmdX2UKGgGR7/LvE0iyIHkaAdLA2gIR0Cop9lWfbsXdX2UKGgGR7/AhUR3/xUeaAdLAmgIR0Cop5gcT8HfdX2UKGgGR7/JFPSDyvs7aAdLA2gIR0CoqCQVj7Q+dX2UKGgGR7/UzOHFglWwaAdLA2gIR0Cop6SKekHldX2UKGgGR7/QHO8kD6nBaAdLA2gIR0CoqDTg/C66dX2UKGgGR7+1u63AmAskaAdLAmgIR0Cop7FXq7iAdX2UKGgGR7/UArhBJI1+aAdLA2gIR0Cop782BJ7LdX2UKGgGR8AVXS5RTCLuaAdLMmgIR0Cop2/k3juKdX2UKGgGR7/jaXBxgiNbaAdLCGgIR0CoqFxdIGyHdX2UKGgGR7/IuL74zrNXaAdLA2gIR0CoqGy7GvOhdX2UKGgGR7/kfra/RE4OaAdLCGgIR0Cop5kr5IpZdX2UKGgGR7+7aCcwxnFpaAdLAmgIR0Cop6Jx3mmtdX2UKGgGR7/aMA3kxREXaAdLBGgIR0CoqIF9jPOZdX2UKGgGR7/QhKlHjIaMaAdLA2gIR0Cop7LBj4HpdX2UKGgGR7/SDNyHVPN3aAdLA2gIR0CoqI7oSteVdX2UKGgGR7/C/dqL0jC6aAdLAmgIR0Cop7tu+AVgdX2UKGgGR7/+mrGR3eN2aAdLEWgIR0CoqBrmyPdVdX2UKGgGR8AG4eDFqBVdaAdLHGgIR0CoqGjM/yG0dX2UKGgGR7/WC4z7/GVBaAdLBGgIR0CoqC7EYO2BdX2UKGgGR7/aNQTEit7saAdLBmgIR0Cop98Zk079dX2UKGgGR7/Zi2UjcEeRaAdLBWgIR0CoqEaqCHymdX2UKGgGR7/3j72tdRixaAdLDWgIR0CoqNKzAvcrdX2UKGgGR7/u9Whh6SkkaAdLCmgIR0CoqJjwQUYbdX2UKGgGR7/M1b7j1f3OaAdLA2gIR0CoqKiiAUcodX2UKGgGR7/QUjs2NvOyaAdLBGgIR0CoqLtvOyE+dX2UKGgGR7+6N4qwyIpIaAdLAmgIR0CoqMQZGax5dX2UKGgGR7/NWwu/UONHaAdLA2gIR0CoqNMWoFV1dX2UKGgGR7+7H/95yEL6aAdLAmgIR0CoqNs9KVY7dX2UKGgGR8AAW5Dqnm7raAdLFGgIR0CoqKW6kIomdX2UKGgGR7/Yog3cYZVGaAdLBGgIR0CoqLabvw3HdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61eee58a6768009ba1dbbcb69fd08012357545b9532f321c6a6248632bf44886
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af09a20d3fba4d325ccfbab581e84267d16a2cba9cd418d984f88a7a872b15b8
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x796836548550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79683653a640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699056657669101600, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAEz18v7+BYb9Bylg/lED+v6ieJj+1lWu+I4iPPiSKQLnG1ts+twYdvrJcBcAylNG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiz4CvzLYSb7Cyss/ystcvgqSuj8XBB0/n7iTv9Y/cL3CpX+9ao88vzvH079vFce/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAATPXy/v4Fhv0HKWD+pNOo/+LYlPxTpzj+UQP6/qJ4mP7WVa74Nqt0/ZQ3Lvp7e0z8jiI8+JIpAucbW2z6qV/Q+n7v5uug1wz63Bh2+slwFwDKU0b83wQ+/Sj2ivz8Quz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-9.8530692e-01 -8.8088602e-01 8.4683615e-01]\n [-1.9863458e+00 6.5085840e-01 -2.3006327e-01]\n [ 2.8033552e-01 -1.8362008e-04 4.2937297e-01]\n [-1.5334593e-01 -2.0837827e+00 -1.6373351e+00]]", "desired_goal": "[[-0.50876683 -0.19711378 1.5921252 ]\n [-0.21562114 1.4575818 0.61334366]\n [-1.1540717 -0.05865463 -0.06241394]\n [-0.7365633 -1.6545175 -1.5553416 ]]", "observation": "[[-9.8530692e-01 -8.8088602e-01 8.4683615e-01 1.8297321e+00\n 6.4732313e-01 1.6164880e+00]\n [-1.9863458e+00 6.5085840e-01 -2.3006327e-01 1.7317520e+00\n -3.9658657e-01 1.6552312e+00]\n [ 2.8033552e-01 -1.8362008e-04 4.2937297e-01 4.7723132e-01\n -1.9053108e-03 3.8127065e-01]\n [-1.5334593e-01 -2.0837827e+00 -1.6373351e+00 -5.6154197e-01\n -1.2674954e+00 3.6535832e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/+yFvdRp8r0xCBU+fCDPvBOCvjyeoMQ9H6rmu6+ppL0S+Is+F7/ZPcxoB71Rjpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06539344 -0.11836591 0.14553906]\n [-0.02528404 0.02325538 0.09600948]\n [-0.00703932 -0.08040177 0.273377 ]\n [ 0.10632151 -0.03305893 0.2979608 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9ekJrtVrASMAWyUSwOMAXSUR0CopLViWmgrdX2UKGgGR7+hgssg+yJLaAdLAWgIR0CopQvcafjCdX2UKGgGR7+hDmbLEDQraAdLAWgIR0CopLxIjGDMdX2UKGgGR7/QhB7eEZivaAdLA2gIR0CopZRA0KqodX2UKGgGR7+1cqvvBrN4aAdLAmgIR0CopRSCWeH0dX2UKGgGR7/AP6sQumJnaAdLAmgIR0CopMTSLIgedX2UKGgGR7+4XrMTviLmaAdLAmgIR0CopZyxRl6JdX2UKGgGR7/GtlI3BHkMaAdLAmgIR0CopR1cD8tPdX2UKGgGR8AWx2zOX3QEaAdLMmgIR0CopWXtKIzndX2UKGgGR7/Pdt2s7uD0aAdLA2gIR0CopXKq4pc5dX2UKGgGR7/dL0SRKYiQaAdLBmgIR0CopOHFHavidX2UKGgGR7/kJQUHpr1vaAdLCGgIR0CopcaPjn3ddX2UKGgGR7/SN5MURFqjaAdLA2gIR0CopYTE74i5dX2UKGgGR7/MxRl6JIlMaAdLA2gIR0CopPSA6MisdX2UKGgGR7/jVYhdMTN/aAdLCGgIR0CopUjS5RTCdX2UKGgGR7/DpJPIn0CjaAdLAmgIR0CopP1+I/JOdX2UKGgGR7/N+5OJtSAIaAdLA2gIR0CopdU/W1+idX2UKGgGR7/Qp1A7gbZOaAdLA2gIR0CopZLncL0BdX2UKGgGR7+8ow22oegdaAdLAmgIR0CopeAVGkN4dX2UKGgGR7/A47Rv3rUtaAdLAmgIR0CopZ4QSSNgdX2UKGgGR7/aWf9P1tfpaAdLBGgIR0CopVzeoDPodX2UKGgGR7/O0UGmk30gaAdLA2gIR0CopQ1ZcLSedX2UKGgGR7/GlO45Lh73aAdLAmgIR0CopelOfukUdX2UKGgGR7/OtbLU1AJLaAdLA2gIR0Copat+TeO5dX2UKGgGR7+84m1IAfdRaAdLAmgIR0CopfSD7IkrdX2UKGgGR7/RJjDsMRYjaAdLA2gIR0CopgHQyAQQdX2UKGgGR7/SRT0g8r7PaAdLBGgIR0Copb95hSccdX2UKGgGR7/kFTNt65XmaAdLB2gIR0CopS5+YtxudX2UKGgGR7/DcyFfzBhyaAdLAmgIR0CopcpYs/Y8dX2UKGgGR7/AD2alUIcBaAdLAmgIR0CopTmgJ1JUdX2UKGgGR7/aLoOhCdBjaAdLBWgIR0CopVA+yJKrdX2UKGgGR7/GbGWD6FdtaAdLAmgIR0CopVhcAzYVdX2UKGgGR7/lVDrqt5lfaAdLCGgIR0Cope3LNfPYdX2UKGgGR7/RqMFUyYXwaAdLA2gIR0CopfxK6FufdX2UKGgGR7/lU+s5n13/aAdLB2gIR0CopXh/I8yOdX2UKGgGR7/m2epXIU8FaAdLCGgIR0Coph/c32mIdX2UKGgGR7/gYAKfFrEcaAdLBWgIR0CopY83Mpw0dX2UKGgGR7/TLfDUExIraAdLA2gIR0Copi9CVryldX2UKGgGR7/Xsmv4dp7DaAdLBGgIR0CopaKA8SwodX2UKGgGR7/Al+mWMS9NaAdLAmgIR0Copa0LMLWqdX2UKGgGR8AZZwJgLJCCaAdLMmgIR0CopksC1Z1WdX2UKGgGR8Aao7yQPqcFaAdLMmgIR0Copu4DcM3IdX2UKGgGR7/1zJuEVWS2aAdLDWgIR0Copodl2/zrdX2UKGgGR7/UyCnP3SKFaAdLA2gIR0Coppa37UG3dX2UKGgGR8AOFOIqLCN0aAdLJ2gIR0Copmbo0Q9SdX2UKGgGR7+5dX1anrIHaAdLAmgIR0CopnIiLVFydX2UKGgGR7/TpJf6XSjQaAdLA2gIR0Copn7lA/s3dX2UKGgGR8AYoN4JNTLoaAdLMmgIR0Copx82BJ7LdX2UKGgGR7/EAq/dqL0jaAdLAmgIR0Copye67NB4dX2UKGgGR7/Q642CNCJGaAdLA2gIR0CopzYPwuuidX2UKGgGR7+7UYsNDtw8aAdLAmgIR0Copz3dTHbRdX2UKGgGR8AC/NxEORT1aAdLGGgIR0CopwcpTdcjdX2UKGgGR7/Tr1M/QjUvaAdLA2gIR0Cop0zLfUF0dX2UKGgGR7+ouyu6mO2iaAdLAWgIR0Cop1CgCfYjdX2UKGgGR7/QI68xsVL0aAdLA2gIR0Cop18J2MbWdX2UKGgGR7/hGTkhib2EaAdLBmgIR0CopyIwVTJhdX2UKGgGR7+eSr5qM3qBaAdLAWgIR0CopyZ1eSjhdX2UKGgGR7/R8CPp6hQFaAdLA2gIR0Cop2wLeANHdX2UKGgGR7/WIKc/dIoWaAdLA2gIR0CopzYtHxz8dX2UKGgGR7/B4gzP8hs7aAdLAmgIR0Copz+HJtBOdX2UKGgGR7/iXgccU/OdaAdLB2gIR0Cop5Auyu6mdX2UKGgGR8AVX6l+EytWaAdLMmgIR0Cop9phfBvadX2UKGgGR7/Wwnpjc2zfaAdLBGgIR0Cop6RigCfZdX2UKGgGR7/Q+y7f51vEaAdLA2gIR0Cop+sglnh9dX2UKGgGR7/tb5dnkDISaAdLCmgIR0Cop2/EGZ/kdX2UKGgGR7/RMuOCGvfTaAdLA2gIR0Cop/hegL7XdX2UKGgGR7+8E3bVSXMRaAdLAmgIR0Cop3w/xDsudX2UKGgGR7/k6MJhOP/8aAdLCGgIR0Cop8nIp6QedX2UKGgGR7/ZSSeRPoFFaAdLBGgIR0Cop4zpX6qLdX2UKGgGR7/YJ9iMHbAUaAdLBmgIR0CoqBdm6GxmdX2UKGgGR7/LvE0iyIHkaAdLA2gIR0Cop9lWfbsXdX2UKGgGR7/AhUR3/xUeaAdLAmgIR0Cop5gcT8HfdX2UKGgGR7/JFPSDyvs7aAdLA2gIR0CoqCQVj7Q+dX2UKGgGR7/UzOHFglWwaAdLA2gIR0Cop6SKekHldX2UKGgGR7/QHO8kD6nBaAdLA2gIR0CoqDTg/C66dX2UKGgGR7+1u63AmAskaAdLAmgIR0Cop7FXq7iAdX2UKGgGR7/UArhBJI1+aAdLA2gIR0Cop782BJ7LdX2UKGgGR8AVXS5RTCLuaAdLMmgIR0Cop2/k3juKdX2UKGgGR7/jaXBxgiNbaAdLCGgIR0CoqFxdIGyHdX2UKGgGR7/IuL74zrNXaAdLA2gIR0CoqGy7GvOhdX2UKGgGR7/kfra/RE4OaAdLCGgIR0Cop5kr5IpZdX2UKGgGR7+7aCcwxnFpaAdLAmgIR0Cop6Jx3mmtdX2UKGgGR7/aMA3kxREXaAdLBGgIR0CoqIF9jPOZdX2UKGgGR7/QhKlHjIaMaAdLA2gIR0Cop7LBj4HpdX2UKGgGR7/SDNyHVPN3aAdLA2gIR0CoqI7oSteVdX2UKGgGR7/C/dqL0jC6aAdLAmgIR0Cop7tu+AVgdX2UKGgGR7/+mrGR3eN2aAdLEWgIR0CoqBrmyPdVdX2UKGgGR8AG4eDFqBVdaAdLHGgIR0CoqGjM/yG0dX2UKGgGR7/WC4z7/GVBaAdLBGgIR0CoqC7EYO2BdX2UKGgGR7/aNQTEit7saAdLBmgIR0Cop98Zk079dX2UKGgGR7/Zi2UjcEeRaAdLBWgIR0CoqEaqCHymdX2UKGgGR7/3j72tdRixaAdLDWgIR0CoqNKzAvcrdX2UKGgGR7/u9Whh6SkkaAdLCmgIR0CoqJjwQUYbdX2UKGgGR7/M1b7j1f3OaAdLA2gIR0CoqKiiAUcodX2UKGgGR7/QUjs2NvOyaAdLBGgIR0CoqLtvOyE+dX2UKGgGR7+6N4qwyIpIaAdLAmgIR0CoqMQZGax5dX2UKGgGR7/NWwu/UONHaAdLA2gIR0CoqNMWoFV1dX2UKGgGR7+7H/95yEL6aAdLAmgIR0CoqNs9KVY7dX2UKGgGR8AAW5Dqnm7raAdLFGgIR0CoqKW6kIomdX2UKGgGR7/Yog3cYZVGaAdLBGgIR0CoqLabvw3HdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (876 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.3734597088769078, "std_reward": 0.3154192639408291, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-04T01:17:12.694173"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fd7783aefbc2c005c4815257ab285e83463c1c5e28ab8a82e1848d47db5286e
3
+ size 2636