JordanTallon commited on
Commit
5b3ddba
1 Parent(s): 03443aa

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,201 +1,267 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
 
63
 
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
 
 
 
 
 
 
 
 
 
 
 
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: The ban, which went into effect in March 2019, was embraced by Trump following
12
+ a massacre that killed 58 people at a music festival in Las Vegas in which the
13
+ gunman used bump stocks.
14
+ - text: 'Now Modi has made international headlines for yet another similarity: He’s
15
+ constructing a massive wall … but unlike Trump’s goal of keeping immigrants out,
16
+ Modi’s wall was built to hide the country’s poverty from the gold-plated American
17
+ president.'
18
+ - text: 'Though banks have fled many low-income communities, there’s a post office
19
+ for almost every ZIP code in the country. '
20
+ - text: The administration has stonewalled Congress during the impeachment proceedings
21
+ and other investigations, but the American public overwhelmingly wants the Trump
22
+ administration to comply with lawmakers.
23
+ - text: The gun lobby has repeatedly claimed that using a gun in self-defense is a
24
+ common event, often going so far as to allege that Americans defend themselves
25
+ with guns millions of times a year.
26
+ pipeline_tag: text-classification
27
+ inference: true
28
+ base_model: BAAI/bge-small-en-v1.5
29
+ model-index:
30
+ - name: SetFit with BAAI/bge-small-en-v1.5
31
+ results:
32
+ - task:
33
+ type: text-classification
34
+ name: Text Classification
35
+ dataset:
36
+ name: Unknown
37
+ type: unknown
38
+ split: test
39
+ metrics:
40
+ - type: accuracy
41
+ value: 0.67003367003367
42
+ name: Accuracy
43
  ---
44
 
45
+ # SetFit with BAAI/bge-small-en-v1.5
46
 
47
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
48
 
49
+ The model has been trained using an efficient few-shot learning technique that involves:
50
 
51
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
52
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
53
 
54
  ## Model Details
55
 
56
  ### Model Description
57
+ - **Model Type:** SetFit
58
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
59
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
60
+ - **Maximum Sequence Length:** 512 tokens
61
+ - **Number of Classes:** 3 classes
62
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
69
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
70
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
71
+
72
+ ### Model Labels
73
+ | Label | Examples |
74
+ |:-------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
75
+ | center | <ul><li>'A leading economist who vouched for Democratic presidential candidate Elizabeth Warren’s healthcare reform plan told Reuters on Thursday he doubts its staggering cost can be fully covered alongside her other government programs.'</li><li>'Labour leader Jeremy Corbyn unveiled his party’s election manifesto on Thursday, setting out radical plans to transform Britain with public sector pay rises, higher taxes on companies and a sweeping nationalisation of infrastructure.'</li><li>'Instagram will start blocking any hashtags spreading misinformation about vaccines, becoming the latest internet platform to crack down on bad health information.'</li></ul> |
76
+ | right | <ul><li>'Sanders praises the radical Green New Deal, champions a Medicare for All plan with a $34 trillion price tag, nods to abortion as a means of population control, and defends bread lines and Fidel Castro’s Cuba. '</li><li>'Since when did even conservative publications consider that it’s the right and moral thing to do to provide covering fire for an increasingly thuggish, openly hard-left, and borderline terroristic group which is less obviously to do with ‘racism’, but which has almost everything to do with smashing Western civilisation?'</li><li>'Local health officer\xa0Dr Rosana Salvaterra appeared to co-sign the demonstration,\xa0praising activists\xa0for wearing masks and claiming they obeyed social distancing protocols — although\xa0footage\xa0of the event strongly suggests that is\xa0not strictly accurate.'</li></ul> |
77
+ | left | <ul><li>'Activists planning to line California roadways with anti-vaccination billboards full of misinformation are paying for them through Facebook fundraisers, despite a platform-wide crackdown on such campaigns.'</li><li>'On Monday, as\xa0Common Dreams\xa0reported, Trump threatened to deploy federal forces to Chicago, Philadelphia, Detroit, Baltimore, and Oakland to confront Black Lives Matter protesters.'</li><li>"When the nation's highest civilian honor went to a right-wing media personality, it served as an oddly appropriate capstone to Trump's broader goals."</li></ul> |
78
 
79
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
+ ### Metrics
82
+ | Label | Accuracy |
83
+ |:--------|:---------|
84
+ | **all** | 0.6700 |
85
 
86
  ## Uses
87
 
88
+ ### Direct Use for Inference
89
 
90
+ First install the SetFit library:
91
 
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
 
96
+ Then you can load this model and run inference.
97
 
98
+ ```python
99
+ from setfit import SetFitModel
100
 
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("JordanTallon/Unifeed")
103
+ # Run inference
104
+ preds = model("Though banks have fled many low-income communities, there’s a post office for almost every ZIP code in the country. ")
105
+ ```
106
 
107
+ <!--
108
+ ### Downstream Use
109
 
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
 
112
 
113
+ <!--
114
+ ### Out-of-Scope Use
115
 
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
 
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
 
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
 
125
+ <!--
126
  ### Recommendations
127
 
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
 
 
 
 
 
 
 
130
 
131
  ## Training Details
132
 
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:--------|:----|
136
+ | Word count | 1 | 33.0139 | 195 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:-------|:----------------------|
140
+ | center | 782 |
141
+ | left | 780 |
142
+ | right | 813 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (64, 64)
146
+ - num_epochs: (2, 2)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 20
150
+ - body_learning_rate: (2e-05, 2e-05)
151
+ - head_learning_rate: 2e-05
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:------:|:----:|:-------------:|:---------------:|
165
+ | 0.0007 | 1 | 0.2531 | - |
166
+ | 0.0337 | 50 | 0.253 | - |
167
+ | 0.0673 | 100 | 0.2491 | - |
168
+ | 0.1010 | 150 | 0.2592 | - |
169
+ | 0.1347 | 200 | 0.2476 | - |
170
+ | 0.1684 | 250 | 0.2282 | - |
171
+ | 0.2020 | 300 | 0.2222 | - |
172
+ | 0.2357 | 350 | 0.2196 | - |
173
+ | 0.2694 | 400 | 0.2199 | - |
174
+ | 0.3030 | 450 | 0.1821 | - |
175
+ | 0.3367 | 500 | 0.1819 | - |
176
+ | 0.3704 | 550 | 0.1327 | - |
177
+ | 0.4040 | 600 | 0.1193 | - |
178
+ | 0.4377 | 650 | 0.1652 | - |
179
+ | 0.4714 | 700 | 0.1059 | - |
180
+ | 0.5051 | 750 | 0.1141 | - |
181
+ | 0.5387 | 800 | 0.1103 | - |
182
+ | 0.5724 | 850 | 0.1138 | - |
183
+ | 0.6061 | 900 | 0.0894 | - |
184
+ | 0.6397 | 950 | 0.1138 | - |
185
+ | 0.6734 | 1000 | 0.11 | - |
186
+ | 0.7071 | 1050 | 0.1091 | - |
187
+ | 0.7407 | 1100 | 0.0804 | - |
188
+ | 0.7744 | 1150 | 0.1161 | - |
189
+ | 0.8081 | 1200 | 0.0715 | - |
190
+ | 0.8418 | 1250 | 0.1 | - |
191
+ | 0.8754 | 1300 | 0.0687 | - |
192
+ | 0.9091 | 1350 | 0.0488 | - |
193
+ | 0.9428 | 1400 | 0.0354 | - |
194
+ | 0.9764 | 1450 | 0.0244 | - |
195
+ | 1.0101 | 1500 | 0.02 | - |
196
+ | 1.0438 | 1550 | 0.0179 | - |
197
+ | 1.0774 | 1600 | 0.0219 | - |
198
+ | 1.1111 | 1650 | 0.0056 | - |
199
+ | 1.1448 | 1700 | 0.0169 | - |
200
+ | 1.1785 | 1750 | 0.0038 | - |
201
+ | 1.2121 | 1800 | 0.0139 | - |
202
+ | 1.2458 | 1850 | 0.0154 | - |
203
+ | 1.2795 | 1900 | 0.0118 | - |
204
+ | 1.3131 | 1950 | 0.0019 | - |
205
+ | 1.3468 | 2000 | 0.0016 | - |
206
+ | 1.3805 | 2050 | 0.0019 | - |
207
+ | 1.4141 | 2100 | 0.0016 | - |
208
+ | 1.4478 | 2150 | 0.0017 | - |
209
+ | 1.4815 | 2200 | 0.0011 | - |
210
+ | 1.5152 | 2250 | 0.0013 | - |
211
+ | 1.5488 | 2300 | 0.0123 | - |
212
+ | 1.5825 | 2350 | 0.0014 | - |
213
+ | 1.6162 | 2400 | 0.0013 | - |
214
+ | 1.6498 | 2450 | 0.001 | - |
215
+ | 1.6835 | 2500 | 0.0042 | - |
216
+ | 1.7172 | 2550 | 0.0017 | - |
217
+ | 1.7508 | 2600 | 0.0027 | - |
218
+ | 1.7845 | 2650 | 0.0016 | - |
219
+ | 1.8182 | 2700 | 0.0011 | - |
220
+ | 1.8519 | 2750 | 0.0014 | - |
221
+ | 1.8855 | 2800 | 0.0012 | - |
222
+ | 1.9192 | 2850 | 0.0012 | - |
223
+ | 1.9529 | 2900 | 0.0009 | - |
224
+ | 1.9865 | 2950 | 0.001 | - |
225
+
226
+ ### Framework Versions
227
+ - Python: 3.10.12
228
+ - SetFit: 1.0.3
229
+ - Sentence Transformers: 2.2.2
230
+ - Transformers: 4.35.2
231
+ - PyTorch: 2.1.0+cu121
232
+ - Datasets: 2.16.1
233
+ - Tokenizers: 0.15.1
234
+
235
+ ## Citation
236
+
237
+ ### BibTeX
238
+ ```bibtex
239
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
240
+ doi = {10.48550/ARXIV.2209.11055},
241
+ url = {https://arxiv.org/abs/2209.11055},
242
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
243
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
244
+ title = {Efficient Few-Shot Learning Without Prompts},
245
+ publisher = {arXiv},
246
+ year = {2022},
247
+ copyright = {Creative Commons Attribution 4.0 International}
248
+ }
249
+ ```
250
+
251
+ <!--
252
+ ## Glossary
253
+
254
+ *Clearly define terms in order to be accessible across audiences.*
255
+ -->
256
+
257
+ <!--
258
+ ## Model Card Authors
259
+
260
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
261
+ -->
262
+
263
+ <!--
264
  ## Model Card Contact
265
 
266
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
267
+ -->
 
config.json CHANGED
@@ -1,35 +1,31 @@
1
  {
2
- "_name_or_path": "distilbert-base-uncased",
3
- "activation": "gelu",
4
  "architectures": [
5
- "DistilBertForSequenceClassification"
6
  ],
7
- "attention_dropout": 0.1,
8
- "dim": 768,
9
- "dropout": 0.1,
10
- "hidden_dim": 3072,
 
11
  "id2label": {
12
- "0": "LABEL_0",
13
- "1": "LABEL_1",
14
- "2": "LABEL_2"
15
  },
16
  "initializer_range": 0.02,
 
17
  "label2id": {
18
- "LABEL_0": 0,
19
- "LABEL_1": 1,
20
- "LABEL_2": 2
21
  },
 
22
  "max_position_embeddings": 512,
23
- "model_type": "distilbert",
24
- "n_heads": 12,
25
- "n_layers": 6,
26
  "pad_token_id": 0,
27
- "problem_type": "single_label_classification",
28
- "qa_dropout": 0.1,
29
- "seq_classif_dropout": 0.2,
30
- "sinusoidal_pos_embds": false,
31
- "tie_weights_": true,
32
  "torch_dtype": "float32",
33
- "transformers_version": "4.37.1",
 
 
34
  "vocab_size": 30522
35
  }
 
1
  {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/BAAI_bge-small-en-v1.5/",
 
3
  "architectures": [
4
+ "BertModel"
5
  ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
  "id2label": {
12
+ "0": "LABEL_0"
 
 
13
  },
14
  "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
  "label2id": {
17
+ "LABEL_0": 0
 
 
18
  },
19
+ "layer_norm_eps": 1e-12,
20
  "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
  "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
 
 
 
 
26
  "torch_dtype": "float32",
27
+ "transformers_version": "4.35.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
  "vocab_size": 30522
31
  }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "center",
5
+ "left",
6
+ "right"
7
+ ]
8
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d319c271a248dbc0e880b559ecfc84e1f7b60ab4846fa2497052e5101f3d180f
3
- size 267835644
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a81bd8924fa00d82337cceb9a0c535bc7271d064c81d2d9105d506b6050a4ac2
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a34c5cf85c7314e1103b5e1d923ef70f5f27a9866401f60d9b5a3f5b808f2605
3
+ size 10143
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
tokenizer.json CHANGED
@@ -2,14 +2,12 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 128,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
- "strategy": {
11
- "Fixed": 128
12
- },
13
  "direction": "Right",
14
  "pad_to_multiple_of": null,
15
  "pad_id": 0,
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 512,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
+ "strategy": "BatchLongest",
 
 
11
  "direction": "Right",
12
  "pad_to_multiple_of": null,
13
  "pad_id": 0,
tokenizer_config.json CHANGED
@@ -43,13 +43,15 @@
43
  },
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
 
46
  "do_lower_case": true,
47
  "mask_token": "[MASK]",
48
  "model_max_length": 512,
 
49
  "pad_token": "[PAD]",
50
  "sep_token": "[SEP]",
51
  "strip_accents": null,
52
  "tokenize_chinese_chars": true,
53
- "tokenizer_class": "DistilBertTokenizer",
54
  "unk_token": "[UNK]"
55
  }
 
43
  },
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
49
  "model_max_length": 512,
50
+ "never_split": null,
51
  "pad_token": "[PAD]",
52
  "sep_token": "[SEP]",
53
  "strip_accents": null,
54
  "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
  "unk_token": "[UNK]"
57
  }