File size: 1,796 Bytes
7bdac27 a89bcf7 7bdac27 5b7564e 7bdac27 5b7564e 7bdac27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- simplification
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: finetuned_model_sentiment_analysis_yelp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_model_sentiment_analysis_yelp
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the [yelp_review_full](https://huggingface.co/datasets/yelp_review_full) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8933
- Precision: 0.6404
- Recall: 0.6409
- F1: 0.6405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 0.8691 | 1.0 | 3657 | 0.8801 | 0.6224 | 0.6201 | 0.6149 |
| 0.7506 | 2.0 | 7314 | 0.8469 | 0.6458 | 0.6421 | 0.6428 |
| 0.6087 | 3.0 | 10971 | 0.8933 | 0.6404 | 0.6409 | 0.6405 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|