Pick and Place with end controller motion and A2C 200k timesteps
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d10491bf605ca0fafc8a047f7fee375d8d2ee12b1c2ed9e034142c10b387fc
|
3 |
+
size 123105
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a4f591125f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a4f59115180>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 219992,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691611401514694719,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhWknP80KiD/bYQs+qUmGvsYKhb+IXws+8UgGwJuEi0DzduLAKVEBv1t8jr7oUgs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC5oEPmuNP72XLgi/jsnevsSDLL+IcFK/CgxkP8uKAL9Q+Cu+B7DGvj8tnj+ak4i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAmlTE/5NsXPpm1Tb+ZFfY+cHfmvwCsAr6j802/hWknP80KiD/bYQs+YT7cOilpXL1mGWO8BxpRPMsME73wBHQ9c1KCPDExu7xt5q66ECY2P599675H7lS/SvhlPur61729Q628o+9Nv6lJhr7GCoW/iF8LPooo3Dor51u9ySBqvNEWUjxCYhO98AR0PXNSgjwxMbu80/7Cupx8lb9TEsI/PpIgP+gPJL/Ru1c/B4aQP5u/rz/xSAbAm4SLQPN24sAO6p5AjsuNwAM9skBMbG7Ac6TjQAAAIMGdEcPAuQsLv+QcQMDfNLc+lyCzvv/rFb5HCMg/9QcMwHfkBMAq9U2/KVEBv1t8jr7oUgs+ljCsOoPdW7004Ge88KJRPIYxGb0ATXk97b/MPFGatrxQRMO6lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[ 0.65395385 1.0628296 0.13611548]\n [-0.26228073 -1.0393913 0.13610661]\n [-2.098202 4.359937 -7.07702 ]\n [-0.50514466 -0.2782925 0.13605845]]",
|
34 |
+
"desired_goal": "[[ 0.12949388 -0.04676573 -0.5319609 ]\n [-0.4351315 -0.6738856 -0.8220296 ]\n [ 0.8908087 -0.5021178 -0.16793942]\n [-0.38806173 1.2357558 -1.0670044 ]]",
|
35 |
+
"observation": "[[ 6.9368207e-01 1.4829975e-01 -8.0355221e-01 4.8063353e-01\n -1.8005199e+00 -1.2760925e-01 -8.0449885e-01 6.5395385e-01\n 1.0628296e+00 1.3611548e-01 1.6803258e-03 -5.3811226e-02\n -1.3861036e-02 1.2762553e-02 -3.5900872e-02 5.9575021e-02\n 1.5908455e-02 -2.2850605e-02 -1.3343819e-03]\n [ 7.1151829e-01 -4.5994279e-01 -8.3176082e-01 2.2457996e-01\n -1.0545905e-01 -2.1150464e-02 -8.0443782e-01 -2.6228073e-01\n -1.0393913e+00 1.3610661e-01 1.6796750e-03 -5.3687256e-02\n -1.4290043e-02 1.2822823e-02 -3.5982378e-02 5.9575021e-02\n 1.5908455e-02 -2.2850605e-02 -1.4876969e-03]\n [-1.1678653e+00 1.5161842e+00 6.2723148e-01 -6.4086771e-01\n 8.4270960e-01 1.1290902e+00 1.3730348e+00 -2.0982020e+00\n 4.3599372e+00 -7.0770202e+00 4.9660711e+00 -4.4310980e+00\n 5.5699477e+00 -3.7253599e+00 7.1138244e+00 -1.0000000e+01\n -6.0959001e+00 -5.4314762e-01 -3.0017633e+00]\n [ 3.5782525e-01 -3.4985802e-01 -1.4640807e-01 1.5627526e+00\n -2.1879857e+00 -2.0764444e+00 -8.0452216e-01 -5.0514466e-01\n -2.7829251e-01 1.3605845e-01 1.3137038e-03 -5.3678047e-02\n -1.4152575e-02 1.2795195e-02 -3.7400745e-02 6.0864449e-02\n 2.4993861e-02 -2.2290381e-02 -1.4897678e-03]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIBjevdXY9z0K16M88m+HvanrFz0K16M8NuMVvrnwPD0K16M8pgsxu2nYFz4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKFMUvOvaC7xBO3E9wslBPQ72DD4K16M8qzbFvajn5DwK16M8Rm/uPbaCcD0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAIBjevdXY9z0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPJvh72p6xc9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA24xW+ufA8PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApgsxu2nYFz4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[-0.10844445 0.12101904 0.02 ]\n [-0.06613149 0.03708998 0.02 ]\n [-0.14637455 0.04612801 0.02 ]\n [-0.0027015 0.14828648 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.00905303 -0.00853608 0.0588944 ]\n [ 0.04731155 0.13765737 0.02 ]\n [-0.09629568 0.02794249 0.02 ]\n [ 0.11642317 0.05871841 0.02 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.0844445e-01\n 1.2101904e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.6131487e-02\n 3.7089977e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4637455e-01\n 4.6128009e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.7015000e-03\n 1.4828648e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.7800199999999999,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CLKznHNorXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLLG70WdmQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLLKNtqHoHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMqcIZ62OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMfUtqYZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMyYrrgO0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMzE2pAD8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOQuU2UB5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOF54W1twdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOZCxeLNwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOaBd2PkrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLP62sq8UVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLPw6ClJpWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLQD/BFd9ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLP9r/sE7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRYSi/O+qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRMIgvDgqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRfvBrN4adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRhvc8DB/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLRkePJaJRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLTCy6cy31dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLS400m+j/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLTL/Ue+23dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLTM2DQJHBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLU6YLsruqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLU3GKhtcfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLVK0XP7emdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLVjzq8lHCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLXWfDk2gndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLXZCTEBKddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLXtQbdadMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLYBKhcqvvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLZyYuTRpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLZyzC1qnFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLaGhYeT3ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLabMi8nNQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLb5TYNAkcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLbqWgvlEJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLb+XTmW+odX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLb/6ciGFjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLb86o2n89dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdWi1y/9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdK/ag261dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdgA0bcXWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdf+DOC5FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLe9gqmTC+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLewc3l0YCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLfEZKnNxEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLfCYBvJiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLgfpTuOS4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLgYUfPompdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLguRbr1M/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLgxYhdMTOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLiKTRplBhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLh9Gx2SuAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLiRs8gZCOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLiRpztCzDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLjv/pdKNAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLjrMcIZ62dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLkAnAIppfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLkFwHZ9NOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLlhazNUwSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLlViLEUCadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLlqLDQ7cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLls2x6fJ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLnJvrnkksdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLm7Xf642CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLnQKOT7l8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLnKxCY1HfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLoiGyon8bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLoUTlDF6zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLopFMIu5CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLolv2oNutdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLp8aCtihGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLpt31zySWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLqB49ovi+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLp++Y+jdpdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLqAt29tdidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrWFr2xptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrIRjBl+WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrc7JW/8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrh3ta6jGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLs/eenQ6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLs2yXUpd9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLtL5IH1OCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLtOnkT6BRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLul+2mYShdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLuYs6q815dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLutKdxyXEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLurHdXT3JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLwaMLncL0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLweptrKvFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLw1XQtz0ZdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLw34M4LkTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLxQ7f51vEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLzGpazNUwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLzKDq4YrKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLzNa9sabXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLzohlDneSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLz/AiV0LddWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 10999,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ae5727d9c70dd007856eb0c8e61708d337035b50dcb8e2066f6d5d2aa080466
|
3 |
+
size 51646
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d66980d042e4367377e584157a26a03d0b99b363452ee4e6683c659afed4f0ca
|
3 |
+
size 52926
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a4f591125f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a4f59115180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 219992, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691611401514694719, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhWknP80KiD/bYQs+qUmGvsYKhb+IXws+8UgGwJuEi0DzduLAKVEBv1t8jr7oUgs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAC5oEPmuNP72XLgi/jsnevsSDLL+IcFK/CgxkP8uKAL9Q+Cu+B7DGvj8tnj+ak4i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAmlTE/5NsXPpm1Tb+ZFfY+cHfmvwCsAr6j802/hWknP80KiD/bYQs+YT7cOilpXL1mGWO8BxpRPMsME73wBHQ9c1KCPDExu7xt5q66ECY2P599675H7lS/SvhlPur61729Q628o+9Nv6lJhr7GCoW/iF8LPooo3Dor51u9ySBqvNEWUjxCYhO98AR0PXNSgjwxMbu80/7Cupx8lb9TEsI/PpIgP+gPJL/Ru1c/B4aQP5u/rz/xSAbAm4SLQPN24sAO6p5AjsuNwAM9skBMbG7Ac6TjQAAAIMGdEcPAuQsLv+QcQMDfNLc+lyCzvv/rFb5HCMg/9QcMwHfkBMAq9U2/KVEBv1t8jr7oUgs+ljCsOoPdW7004Ge88KJRPIYxGb0ATXk97b/MPFGatrxQRMO6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.65395385 1.0628296 0.13611548]\n [-0.26228073 -1.0393913 0.13610661]\n [-2.098202 4.359937 -7.07702 ]\n [-0.50514466 -0.2782925 0.13605845]]", "desired_goal": "[[ 0.12949388 -0.04676573 -0.5319609 ]\n [-0.4351315 -0.6738856 -0.8220296 ]\n [ 0.8908087 -0.5021178 -0.16793942]\n [-0.38806173 1.2357558 -1.0670044 ]]", "observation": "[[ 6.9368207e-01 1.4829975e-01 -8.0355221e-01 4.8063353e-01\n -1.8005199e+00 -1.2760925e-01 -8.0449885e-01 6.5395385e-01\n 1.0628296e+00 1.3611548e-01 1.6803258e-03 -5.3811226e-02\n -1.3861036e-02 1.2762553e-02 -3.5900872e-02 5.9575021e-02\n 1.5908455e-02 -2.2850605e-02 -1.3343819e-03]\n [ 7.1151829e-01 -4.5994279e-01 -8.3176082e-01 2.2457996e-01\n -1.0545905e-01 -2.1150464e-02 -8.0443782e-01 -2.6228073e-01\n -1.0393913e+00 1.3610661e-01 1.6796750e-03 -5.3687256e-02\n -1.4290043e-02 1.2822823e-02 -3.5982378e-02 5.9575021e-02\n 1.5908455e-02 -2.2850605e-02 -1.4876969e-03]\n [-1.1678653e+00 1.5161842e+00 6.2723148e-01 -6.4086771e-01\n 8.4270960e-01 1.1290902e+00 1.3730348e+00 -2.0982020e+00\n 4.3599372e+00 -7.0770202e+00 4.9660711e+00 -4.4310980e+00\n 5.5699477e+00 -3.7253599e+00 7.1138244e+00 -1.0000000e+01\n -6.0959001e+00 -5.4314762e-01 -3.0017633e+00]\n [ 3.5782525e-01 -3.4985802e-01 -1.4640807e-01 1.5627526e+00\n -2.1879857e+00 -2.0764444e+00 -8.0452216e-01 -5.0514466e-01\n -2.7829251e-01 1.3605845e-01 1.3137038e-03 -5.3678047e-02\n -1.4152575e-02 1.2795195e-02 -3.7400745e-02 6.0864449e-02\n 2.4993861e-02 -2.2290381e-02 -1.4897678e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIBjevdXY9z0K16M88m+HvanrFz0K16M8NuMVvrnwPD0K16M8pgsxu2nYFz4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKFMUvOvaC7xBO3E9wslBPQ72DD4K16M8qzbFvajn5DwK16M8Rm/uPbaCcD0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAIBjevdXY9z0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAPJvh72p6xc9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA24xW+ufA8PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApgsxu2nYFz4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.10844445 0.12101904 0.02 ]\n [-0.06613149 0.03708998 0.02 ]\n [-0.14637455 0.04612801 0.02 ]\n [-0.0027015 0.14828648 0.02 ]]", "desired_goal": "[[-0.00905303 -0.00853608 0.0588944 ]\n [ 0.04731155 0.13765737 0.02 ]\n [-0.09629568 0.02794249 0.02 ]\n [ 0.11642317 0.05871841 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.0844445e-01\n 1.2101904e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.6131487e-02\n 3.7089977e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4637455e-01\n 4.6128009e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.7015000e-03\n 1.4828648e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7800199999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CLKznHNorXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLLG70WdmQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLLKNtqHoHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMqcIZ62OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMfUtqYZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMyYrrgO0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLMzE2pAD8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOQuU2UB5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOF54W1twdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOZCxeLNwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLOaBd2PkrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLP62sq8UVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLPw6ClJpWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLQD/BFd9ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLP9r/sE7odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRYSi/O+qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRMIgvDgqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRfvBrN4adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLRhvc8DB/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLRkePJaJRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLTCy6cy31dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLS400m+j/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLTL/Ue+23dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLTM2DQJHBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLU6YLsruqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLU3GKhtcfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLVK0XP7emdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLVjzq8lHCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLXWfDk2gndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLXZCTEBKddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLXtQbdadMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLYBKhcqvvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLZyYuTRpldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLZyzC1qnFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLaGhYeT3ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLabMi8nNQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLb5TYNAkcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLbqWgvlEJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLb+XTmW+odX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLb/6ciGFjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLb86o2n89dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdWi1y/9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdK/ag261dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdgA0bcXWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLdf+DOC5FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLe9gqmTC+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLewc3l0YCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLfEZKnNxEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLfCYBvJiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLgfpTuOS4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLgYUfPompdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLguRbr1M/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLgxYhdMTOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLiKTRplBhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLh9Gx2SuAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLiRs8gZCOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLiRpztCzDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLjv/pdKNAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLjrMcIZ62dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLkAnAIppfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLkFwHZ9NOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLlhazNUwSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLlViLEUCadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLlqLDQ7cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLls2x6fJ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLnJvrnkksdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLm7Xf642CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLnQKOT7l8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLnKxCY1HfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLoiGyon8bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLoUTlDF6zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLopFMIu5CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLolv2oNutdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLp8aCtihGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLpt31zySWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLqB49ovi+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLp++Y+jdpdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLqAt29tdidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrWFr2xptdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrIRjBl+WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrc7JW/8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLrh3ta6jGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLs/eenQ6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLs2yXUpd9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLtL5IH1OCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLtOnkT6BRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLul+2mYShdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLuYs6q815dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLutKdxyXEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLurHdXT3JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLwaMLncL0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLweptrKvFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLw1XQtz0ZdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLw34M4LkTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLxQ7f51vEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLzGpazNUwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CLzKDq4YrKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLzNa9sabXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLzohlDneSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CLz/AiV0LddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10999, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (567 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-09T20:18:20.456579"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16058f65febea830f12c8f6f42be48d51a836eef316fa107fca8ecdcc461c6b4
|
3 |
+
size 3013
|