--- language: - kr license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - Jungwonchang/ksponspeech metrics: - wer model-index: - name: Whisper large-v2, KsponSpeech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: KsponSpeech type: Jungwonchang/ksponspeech config: dev split: validation args: dev metrics: - name: Wer type: wer value: 42.225687000584685 --- # Whisper large-v2, KsponSpeech This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the KsponSpeech dataset. It achieves the following results on the evaluation set: - Loss: 0.2946 - Wer: 42.2257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3315 | 0.25 | 500 | 0.3446 | 41.5319 | | 0.3204 | 0.5 | 1000 | 0.3229 | 37.7003 | | 0.2967 | 0.75 | 1500 | 0.3054 | 38.3980 | | 0.2859 | 1.0 | 2000 | 0.2946 | 42.2257 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.0 - Tokenizers 0.12.1