Lauler commited on
Commit
104c555
·
1 Parent(s): b90f2b8

Replace boilerplate example code with actual huggingface repo model paths

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -25,7 +25,7 @@ Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
  model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
31
  embeddings = model.encode(sentences)
@@ -50,11 +50,11 @@ def mean_pooling(model_output, attention_mask):
50
 
51
 
52
  # Sentences we want sentence embeddings for
53
- sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
+ sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]
29
 
30
  model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
31
  embeddings = model.encode(sentences)
 
50
 
51
 
52
  # Sentences we want sentence embeddings for
53
+ sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
57
+ model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')