Lauler commited on
Commit
a65f4bc
·
1 Parent(s): 12b144a

v2.0 with teacher all-mpnet-base-v2, trained with longer paragraphs

Browse files
README.md CHANGED
@@ -35,10 +35,18 @@ widget:
35
 
36
  # KBLab/sentence-bert-swedish-cased
37
 
38
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([paraphrase-mpnet-base-v2](https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model.
39
 
40
  A more detailed description of the model can be found in an article we published on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
41
 
 
 
 
 
 
 
 
 
42
  <!--- Describe your model here -->
43
 
44
  ## Usage (Sentence-Transformers)
@@ -81,6 +89,7 @@ def mean_pooling(model_output, attention_mask):
81
  sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
82
 
83
  # Load model from HuggingFace Hub
 
84
  tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
85
  model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
86
 
@@ -98,13 +107,19 @@ print("Sentence embeddings:")
98
  print(sentence_embeddings)
99
  ```
100
 
101
-
102
 
103
  ## Evaluation Results
104
 
105
  <!--- Describe how your model was evaluated -->
106
 
107
- The model was primarily evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase). This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. The model achieved a Pearson correlation coefficient of **0.918** and a Spearman's rank correlation coefficient of **0.911**.
 
 
 
 
 
 
108
 
109
  The following code snippet can be used to reproduce the above results:
110
 
@@ -149,13 +164,46 @@ print(df[["score", "model_score"]].corr(method="spearman"))
149
  print(df[["score", "model_score"]].corr(method="pearson"))
150
  ```
151
 
152
- Examples how to evaluate the model on other test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
  ## Training
155
 
156
- An article with more details on data and the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
157
 
158
- Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, EUbookshop, EMEA, TED2020, Tatoeba and OpenSubtitles.
159
 
160
  The model was trained with the parameters:
161
 
 
35
 
36
  # KBLab/sentence-bert-swedish-cased
37
 
38
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model.
39
 
40
  A more detailed description of the model can be found in an article we published on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
41
 
42
+ **Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default.
43
+
44
+ | Model version | Teacher Model | Max Sequence Length |
45
+ |---------------|---------|----------|
46
+ | v1.0 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 256 |
47
+ | v1.1 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 384 |
48
+ | v2.0 | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 384 |
49
+
50
  <!--- Describe your model here -->
51
 
52
  ## Usage (Sentence-Transformers)
 
89
  sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
90
 
91
  # Load model from HuggingFace Hub
92
+ # To load an older version, e.g. v1.0, add the argument revision="v1.0"
93
  tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
94
  model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
95
 
 
107
  print(sentence_embeddings)
108
  ```
109
 
110
+ To load an older model specify the version tag with the `revision` arg: `AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")`.
111
 
112
  ## Evaluation Results
113
 
114
  <!--- Describe how your model was evaluated -->
115
 
116
+ The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below.
117
+
118
+ | Model version | Pearson | Spearman |
119
+ |---------------|---------|----------|
120
+ | v1.0 | 0.9183 | 0.9114 |
121
+ | v1.1 | 0.9183 | 0.9114 |
122
+ | v2.0 | **0.9283** | **0.9130** |
123
 
124
  The following code snippet can be used to reproduce the above results:
125
 
 
164
  print(df[["score", "model_score"]].corr(method="pearson"))
165
  ```
166
 
167
+ ### Sweparaphrase v2.0
168
+
169
+ In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.
170
+
171
+ | Model version | Data split | Pearson | Spearman |
172
+ |---------------|------------|------------|------------|
173
+ | v1.0 | train | 0.8355 | 0.8256 |
174
+ | v1.1 | train | **0.8383** | **0.8302** |
175
+ | v2.0 | train | 0.8209 | 0.8059 |
176
+ | v1.0 | dev | 0.8682 | 0.8774 |
177
+ | v1.1 | dev | **0.8739** | **0.8833** |
178
+ | v2.0 | dev | 0.8638 | 0.8668 |
179
+ | v1.0 | test | 0.8356 | 0.8476 |
180
+ | v1.1 | test | **0.8393** | **0.8550** |
181
+ | v2.0 | test | 0.8232 | 0.8213 |
182
+
183
+ ### SweFAQ v2.0
184
+
185
+ When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.
186
+
187
+ | Model version | Data split | Accuracy |
188
+ |---------------|------------|------------|
189
+ | v1.0 | train | 0.5262 |
190
+ | v1.1 | train | 0.6236 |
191
+ | v2.0 | train | **0.7106** |
192
+ | v1.0 | dev | 0.4636 |
193
+ | v1.1 | dev | 0.5818 |
194
+ | v2.0 | dev | **0.6727** |
195
+ | v1.0 | test | 0.4495 |
196
+ | v1.1 | test | 0.5229 |
197
+ | v2.0 | test | **0.5871** |
198
+
199
+
200
+ Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).
201
 
202
  ## Training
203
 
204
+ An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
205
 
206
+ Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.
207
 
208
  The model was trained with the parameters:
209
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "output/original-en-sv-2022-12-20_16-52-40/",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "output/no-normalize-en-sv-2022-12-26_18-39-42/",
3
  "architectures": [
4
  "BertModel"
5
  ],
eval/mse_evaluation_TED2020-en-sv-dev.tsv.gz_results.csv CHANGED
@@ -1,124 +1,117 @@
1
  epoch,steps,MSE
2
- 0,1000,0.34974124282598495
3
- 0,2000,0.34921395126730204
4
- 0,3000,0.354314292781055
5
- 0,4000,0.3488133195787668
6
- 0,5000,0.34792646765708923
7
- 0,6000,0.36894388031214476
8
- 0,7000,0.35022159572690725
9
- 0,8000,0.3502144478261471
10
- 0,9000,0.3629593178629875
11
- 0,10000,0.34892880357801914
12
- 0,11000,0.34935250878334045
13
- 0,12000,0.3478859318420291
14
- 0,13000,0.3487293142825365
15
- 0,14000,0.34829590003937483
16
- 0,15000,0.34732643980532885
17
- 0,16000,0.34766194876283407
18
- 0,17000,0.3484585788100958
19
- 0,18000,0.34895502030849457
20
- 0,19000,0.34811608493328094
21
- 0,20000,0.34691705368459225
22
- 0,21000,0.3468364477157593
23
- 0,22000,0.34657707437872887
24
- 0,23000,0.34666003193706274
25
- 0,24000,0.3460049396380782
26
- 0,25000,0.34664138220250607
27
- 0,26000,0.34586922265589237
28
- 0,27000,0.3461060579866171
29
- 0,28000,0.3462697612121701
30
- 0,29000,0.34733759239315987
31
- 0,30000,0.34663842525333166
32
- 0,31000,0.34415228292346
33
- 0,32000,0.34451447427272797
34
- 0,33000,0.344709912315011
35
- 0,34000,0.34585813991725445
36
- 0,35000,0.3458136925473809
37
- 0,36000,0.3447240451350808
38
- 0,37000,0.34575818572193384
39
- 0,38000,0.3454188583418727
40
- 0,39000,0.3460196079686284
41
- 0,40000,0.3453935729339719
42
- 0,41000,0.3460376523435116
43
- 0,42000,0.3455940168350935
44
- 0,43000,0.3460632869973779
45
- 0,44000,0.34571660216897726
46
- 0,45000,0.3458129009231925
47
- 0,46000,0.34544935915619135
48
- 0,47000,0.3456356469541788
49
- 0,48000,0.3457914339378476
50
- 0,49000,0.34663709811866283
51
- 0,50000,0.34600410144776106
52
- 0,51000,0.34615208860486746
53
- 0,52000,0.3460976528003812
54
- 0,53000,0.3433866426348686
55
- 0,54000,0.3440452506765723
56
- 0,55000,0.34487603697925806
57
- 0,56000,0.3436979604884982
58
- 0,57000,0.3439406165853143
59
- 0,58000,0.3453923622146249
60
- 0,59000,0.34493771381676197
61
- 0,60000,0.3449903568252921
62
- 0,61000,0.3443687688559294
63
- 0,62000,0.3443889319896698
64
- 0,63000,0.34302377607673407
65
- 0,64000,0.34372734371572733
66
- 0,65000,0.344184716232121
67
- 0,66000,0.3440574277192354
68
- 0,67000,0.34405707847326994
69
- 0,68000,0.34330685157328844
70
- 0,69000,0.3439192660152912
71
- 0,70000,0.34411929082125425
72
- 0,71000,0.3435770748183131
73
- 0,72000,0.34372536465525627
74
- 0,73000,0.34490013495087624
75
- 0,74000,0.34326689783483744
76
- 0,75000,0.34309893380850554
77
- 0,76000,0.34250954631716013
78
- 0,77000,0.3431871999055147
79
- 0,78000,0.3428747411817312
80
- 0,79000,0.3436204046010971
81
- 0,80000,0.3433616366237402
82
- 0,81000,0.34336880780756474
83
- 0,82000,0.3433717181906104
84
- 0,83000,0.3438536310568452
85
- 0,84000,0.34293336793780327
86
- 0,85000,0.3442385932430625
87
- 0,86000,0.3430124372243881
88
- 0,87000,0.3432458033785224
89
- 0,88000,0.3439270658418536
90
- 0,89000,0.34296554513275623
91
- 0,90000,0.3425579285249114
92
- 0,91000,0.343247945420444
93
- 0,92000,0.3435784252360463
94
- 0,93000,0.34204861149191856
95
- 0,94000,0.3420257940888405
96
- 0,95000,0.3410392440855503
97
- 0,96000,0.3406720468774438
98
- 0,97000,0.3412422724068165
99
- 0,98000,0.34140332136303186
100
- 0,99000,0.3417556406930089
101
- 0,100000,0.34126145765185356
102
- 0,101000,0.34189000725746155
103
- 0,102000,0.34180444199591875
104
- 0,103000,0.3405329305678606
105
- 0,104000,0.34238805528730154
106
- 0,105000,0.34229636657983065
107
- 0,106000,0.34293823409825563
108
- 0,107000,0.3425850532948971
109
- 0,108000,0.3417897270992398
110
- 0,109000,0.34169263672083616
111
- 0,110000,0.3422217909246683
112
- 0,111000,0.34196663182228804
113
- 0,112000,0.3404703689739108
114
- 0,113000,0.3403896000236273
115
- 0,114000,0.3410223638638854
116
- 0,115000,0.3409507218748331
117
- 0,116000,0.34049374517053366
118
- 0,117000,0.3408001968637109
119
- 0,118000,0.3406590083613992
120
- 0,119000,0.34159310162067413
121
- 0,120000,0.3412698395550251
122
- 0,121000,0.3411141689866781
123
- 0,122000,0.34038866870105267
124
- 0,123000,0.34109046682715416
 
1
  epoch,steps,MSE
2
+ 0,1000,0.3305374411866069
3
+ 0,2000,0.3307490376755595
4
+ 0,3000,0.33029515761882067
5
+ 0,4000,0.3363496856763959
6
+ 0,5000,0.33181568142026663
7
+ 0,6000,0.33005450386554
8
+ 0,7000,0.3400696674361825
9
+ 0,8000,0.3337323432788253
10
+ 0,9000,0.3324012039229274
11
+ 0,10000,0.3307985607534647
12
+ 0,11000,0.33261950593441725
13
+ 0,12000,0.3310671541839838
14
+ 0,13000,0.3318543080240488
15
+ 0,14000,0.33143835607916117
16
+ 0,15000,0.33053881488740444
17
+ 0,16000,0.33193877898156643
18
+ 0,17000,0.33089425414800644
19
+ 0,18000,0.3306396072730422
20
+ 0,19000,0.3306496189907193
21
+ 0,20000,0.3303301753476262
22
+ 0,21000,0.33140445593744516
23
+ 0,22000,0.33020293340086937
24
+ 0,23000,0.3308977698907256
25
+ 0,24000,0.3299850504845381
26
+ 0,25000,0.3310497384518385
27
+ 0,26000,0.33014328218996525
28
+ 0,27000,0.3300098003819585
29
+ 0,28000,0.3302561352029443
30
+ 0,29000,0.33076435793191195
31
+ 0,30000,0.33028211910277605
32
+ 0,31000,0.33056996762752533
33
+ 0,32000,0.3295192960649729
34
+ 0,33000,0.32972143962979317
35
+ 0,34000,0.3295718925073743
36
+ 0,35000,0.3292877459898591
37
+ 0,36000,0.32971047330647707
38
+ 0,37000,0.3298777621239424
39
+ 0,38000,0.32897726632654667
40
+ 0,39000,0.32850170973688364
41
+ 0,40000,0.32882699742913246
42
+ 0,41000,0.3295514499768615
43
+ 0,42000,0.3299229545518756
44
+ 0,43000,0.3288676030933857
45
+ 0,44000,0.3289586631581187
46
+ 0,45000,0.3293627640232444
47
+ 0,46000,0.3293595276772976
48
+ 0,47000,0.32900278456509113
49
+ 0,48000,0.3292385721579194
50
+ 0,49000,0.3301975317299366
51
+ 0,50000,0.3289953572675586
52
+ 0,51000,0.3290593158453703
53
+ 0,52000,0.32869731076061726
54
+ 0,53000,0.32881496008485556
55
+ 0,54000,0.32918842043727636
56
+ 0,55000,0.32880869694054127
57
+ 0,56000,0.3290021326392889
58
+ 0,57000,0.3285171231254935
59
+ 0,58000,0.3282122313976288
60
+ 0,59000,0.32952832989394665
61
+ 0,60000,0.3284840611740947
62
+ 0,61000,0.32849146518856287
63
+ 0,62000,0.3292925423011184
64
+ 0,63000,0.32826855313032866
65
+ 0,64000,0.32868378330022097
66
+ 0,65000,0.3289590124040842
67
+ 0,66000,0.32914113253355026
68
+ 0,67000,0.32902946695685387
69
+ 0,68000,0.327494740486145
70
+ 0,69000,0.32870552968233824
71
+ 0,70000,0.32899840734899044
72
+ 0,71000,0.3288975451141596
73
+ 0,72000,0.32872746232897043
74
+ 0,73000,0.3284345380961895
75
+ 0,74000,0.32932700123637915
76
+ 0,75000,0.3289450891315937
77
+ 0,76000,0.32835565507411957
78
+ 0,77000,0.3284606384113431
79
+ 0,78000,0.3285201732069254
80
+ 0,79000,0.3282968420535326
81
+ 0,80000,0.3280844073742628
82
+ 0,81000,0.3282552817836404
83
+ 0,82000,0.32890671864151955
84
+ 0,83000,0.3278125077486038
85
+ 0,84000,0.32847451511770487
86
+ 0,85000,0.3284695325419307
87
+ 0,86000,0.3288332372903824
88
+ 0,87000,0.32888082787394524
89
+ 0,88000,0.32766179647296667
90
+ 0,89000,0.3283764934167266
91
+ 0,90000,0.32793665304780006
92
+ 0,91000,0.32725471537560225
93
+ 0,92000,0.3277936251834035
94
+ 0,93000,0.3274726215749979
95
+ 0,94000,0.32755015417933464
96
+ 0,95000,0.3280520439147949
97
+ 0,96000,0.3282654797658324
98
+ 0,97000,0.32788922544568777
99
+ 0,98000,0.32690519001334906
100
+ 0,99000,0.32813241705298424
101
+ 0,100000,0.3279812401160598
102
+ 0,101000,0.32842066138982773
103
+ 0,102000,0.3276278730481863
104
+ 0,103000,0.32748677767813206
105
+ 0,104000,0.3282419638708234
106
+ 0,105000,0.3277064301073551
107
+ 0,106000,0.32805497758090496
108
+ 0,107000,0.3275437746196985
109
+ 0,108000,0.32795085571706295
110
+ 0,109000,0.32730509992688894
111
+ 0,110000,0.32666658516973257
112
+ 0,111000,0.3273332491517067
113
+ 0,112000,0.32759017776697874
114
+ 0,113000,0.32762193586677313
115
+ 0,114000,0.32658560667186975
116
+ 0,115000,0.3273524809628725
117
+ 0,116000,0.3271533874794841
 
 
 
 
 
 
 
eval/mse_evaluation_Tatoeba-eng-swe-dev.tsv.gz_results.csv CHANGED
@@ -1,124 +1,117 @@
1
  epoch,steps,MSE
2
- 0,1000,0.2744395984336734
3
- 0,2000,0.2732344903051853
4
- 0,3000,0.27526929043233395
5
- 0,4000,0.2727509709075093
6
- 0,5000,0.2726479200646281
7
- 0,6000,0.2773450221866369
8
- 0,7000,0.2734815236181021
9
- 0,8000,0.27323723770678043
10
- 0,9000,0.27514498215168715
11
- 0,10000,0.27173745911568403
12
- 0,11000,0.271493848413229
13
- 0,12000,0.2710314467549324
14
- 0,13000,0.2713753143325448
15
- 0,14000,0.27073214296251535
16
- 0,15000,0.2711733803153038
17
- 0,16000,0.27131817769259214
18
- 0,17000,0.2712530782446265
19
- 0,18000,0.2713564317673445
20
- 0,19000,0.27065700851380825
21
- 0,20000,0.2708346117287874
22
- 0,21000,0.2701618243008852
23
- 0,22000,0.2708142623305321
24
- 0,23000,0.27058098930865526
25
- 0,24000,0.26987355668097734
26
- 0,25000,0.2702167257666588
27
- 0,26000,0.27005996089428663
28
- 0,27000,0.2704422688111663
29
- 0,28000,0.27046180330216885
30
- 0,29000,0.26996054220944643
31
- 0,30000,0.2703654346987605
32
- 0,31000,0.2706443890929222
33
- 0,32000,0.2700826618820429
34
- 0,33000,0.2698082709684968
35
- 0,34000,0.27026834432035685
36
- 0,35000,0.2701908349990845
37
- 0,36000,0.26949571911245584
38
- 0,37000,0.2693337853997946
39
- 0,38000,0.26938540395349264
40
- 0,39000,0.26982848066836596
41
- 0,40000,0.2692650770768523
42
- 0,41000,0.269907433539629
43
- 0,42000,0.2692088717594743
44
- 0,43000,0.26961518451571465
45
- 0,44000,0.2693982794880867
46
- 0,45000,0.26962801348418
47
- 0,46000,0.2698043594136834
48
- 0,47000,0.2695266157388687
49
- 0,48000,0.26929995510727167
50
- 0,49000,0.26941525284200907
51
- 0,50000,0.2691812813282013
52
- 0,51000,0.26892221067100763
53
- 0,52000,0.2696847543120384
54
- 0,53000,0.268734572455287
55
- 0,54000,0.26862353552132845
56
- 0,55000,0.26856022886931896
57
- 0,56000,0.2691086381673813
58
- 0,57000,0.26887678541243076
59
- 0,58000,0.2694257069379091
60
- 0,59000,0.2690558088943362
61
- 0,60000,0.26923459954559803
62
- 0,61000,0.2686571329832077
63
- 0,62000,0.2689000219106674
64
- 0,63000,0.2692748326808214
65
- 0,64000,0.2686175983399153
66
- 0,65000,0.2685254439711571
67
- 0,66000,0.26889864820986986
68
- 0,67000,0.26836462784558535
69
- 0,68000,0.2682679798454046
70
- 0,69000,0.26815461460500956
71
- 0,70000,0.2683368744328618
72
- 0,71000,0.2682250924408436
73
- 0,72000,0.2687834436073899
74
- 0,73000,0.26929827872663736
75
- 0,74000,0.2690488239750266
76
- 0,75000,0.2679044147953391
77
- 0,76000,0.2682675374671817
78
- 0,77000,0.26816066820174456
79
- 0,78000,0.2677485812455416
80
- 0,79000,0.2684414852410555
81
- 0,80000,0.26813503354787827
82
- 0,81000,0.2680476289242506
83
- 0,82000,0.26812972500920296
84
- 0,83000,0.2681598300114274
85
- 0,84000,0.26870507281273603
86
- 0,85000,0.2689675893634558
87
- 0,86000,0.2684480743482709
88
- 0,87000,0.2686573890969157
89
- 0,88000,0.2692556008696556
90
- 0,89000,0.2688751555979252
91
- 0,90000,0.2683075377717614
92
- 0,91000,0.26865273248404264
93
- 0,92000,0.26835002936422825
94
- 0,93000,0.2683911705389619
95
- 0,94000,0.2683736849576235
96
- 0,95000,0.2682714257389307
97
- 0,96000,0.2680947305634618
98
- 0,97000,0.2681643469259143
99
- 0,98000,0.26855955366045237
100
- 0,99000,0.2683456987142563
101
- 0,100000,0.26787673123180866
102
- 0,101000,0.26841198559850454
103
- 0,102000,0.26806306559592485
104
- 0,103000,0.2671808935701847
105
- 0,104000,0.267979153431952
106
- 0,105000,0.2673288341611624
107
- 0,106000,0.26792525313794613
108
- 0,107000,0.2680175472050905
109
- 0,108000,0.267645507119596
110
- 0,109000,0.2677440643310547
111
- 0,110000,0.2679037628695369
112
- 0,111000,0.2675337716937065
113
- 0,112000,0.26777954772114754
114
- 0,113000,0.2673337934538722
115
- 0,114000,0.2673886017873883
116
- 0,115000,0.26709178928285837
117
- 0,116000,0.2673146314918995
118
- 0,117000,0.26732038240879774
119
- 0,118000,0.2673294395208359
120
- 0,119000,0.26773312129080296
121
- 0,120000,0.26698445435613394
122
- 0,121000,0.2667626366019249
123
- 0,122000,0.2666329964995384
124
- 0,123000,0.2665518783032894
 
1
  epoch,steps,MSE
2
+ 0,1000,0.24785797577351332
3
+ 0,2000,0.2478782320395112
4
+ 0,3000,0.24820237886160612
5
+ 0,4000,0.25052379351109266
6
+ 0,5000,0.2484829630702734
7
+ 0,6000,0.24821306578814983
8
+ 0,7000,0.25101194623857737
9
+ 0,8000,0.24918639101088047
10
+ 0,9000,0.24825208820402622
11
+ 0,10000,0.24815460201352835
12
+ 0,11000,0.24851374328136444
13
+ 0,12000,0.24818778038024902
14
+ 0,13000,0.247632572427392
15
+ 0,14000,0.24752533063292503
16
+ 0,15000,0.24750018492341042
17
+ 0,16000,0.24753324687480927
18
+ 0,17000,0.24697233457118273
19
+ 0,18000,0.24762307293713093
20
+ 0,19000,0.24796028155833483
21
+ 0,20000,0.24713336024433374
22
+ 0,21000,0.2480252180248499
23
+ 0,22000,0.24814684875309467
24
+ 0,23000,0.24748872965574265
25
+ 0,24000,0.24726693518459797
26
+ 0,25000,0.24767774157226086
27
+ 0,26000,0.2473350614309311
28
+ 0,27000,0.24677005130797625
29
+ 0,28000,0.24716746993362904
30
+ 0,29000,0.24732353631407022
31
+ 0,30000,0.2474617213010788
32
+ 0,31000,0.24711331352591515
33
+ 0,32000,0.24705547839403152
34
+ 0,33000,0.24687713012099266
35
+ 0,34000,0.24697906337678432
36
+ 0,35000,0.24673829320818186
37
+ 0,36000,0.24703482631593943
38
+ 0,37000,0.24725922849029303
39
+ 0,38000,0.24706728290766478
40
+ 0,39000,0.2470718463882804
41
+ 0,40000,0.24706239346414804
42
+ 0,41000,0.247084628790617
43
+ 0,42000,0.24669873528182507
44
+ 0,43000,0.2467589918524027
45
+ 0,44000,0.24676024913787842
46
+ 0,45000,0.24646525271236897
47
+ 0,46000,0.24657496251165867
48
+ 0,47000,0.245952932164073
49
+ 0,48000,0.24603260681033134
50
+ 0,49000,0.2463929122313857
51
+ 0,50000,0.24623936042189598
52
+ 0,51000,0.24639982730150223
53
+ 0,52000,0.2464748453348875
54
+ 0,53000,0.24611358530819416
55
+ 0,54000,0.24669363629072905
56
+ 0,55000,0.2464905148372054
57
+ 0,56000,0.24694388266652822
58
+ 0,57000,0.24669785052537918
59
+ 0,58000,0.24613626301288605
60
+ 0,59000,0.2463148208335042
61
+ 0,60000,0.24608178064227104
62
+ 0,61000,0.24618220049887896
63
+ 0,62000,0.24709079880267382
64
+ 0,63000,0.2463518874719739
65
+ 0,64000,0.24638932663947344
66
+ 0,65000,0.2465276513248682
67
+ 0,66000,0.24644010700285435
68
+ 0,67000,0.24675603490322828
69
+ 0,68000,0.2460342599079013
70
+ 0,69000,0.24680779315531254
71
+ 0,70000,0.24674353189766407
72
+ 0,71000,0.24644036311656237
73
+ 0,72000,0.24643116630613804
74
+ 0,73000,0.24601935874670744
75
+ 0,74000,0.24650872219353914
76
+ 0,75000,0.2464913995936513
77
+ 0,76000,0.24664695374667645
78
+ 0,77000,0.24642888456583023
79
+ 0,78000,0.24638038594275713
80
+ 0,79000,0.24592014960944653
81
+ 0,80000,0.24589370004832745
82
+ 0,81000,0.2457715105265379
83
+ 0,82000,0.24643635842949152
84
+ 0,83000,0.24539267178624868
85
+ 0,84000,0.24630383122712374
86
+ 0,85000,0.2461036667227745
87
+ 0,86000,0.24639442563056946
88
+ 0,87000,0.24640655610710382
89
+ 0,88000,0.2456542570143938
90
+ 0,89000,0.2460445510223508
91
+ 0,90000,0.24578433949500322
92
+ 0,91000,0.24577109143137932
93
+ 0,92000,0.24596715811640024
94
+ 0,93000,0.2458097180351615
95
+ 0,94000,0.24577626027166843
96
+ 0,95000,0.24602224584668875
97
+ 0,96000,0.24567588698118925
98
+ 0,97000,0.24607458617538214
99
+ 0,98000,0.24560708552598953
100
+ 0,99000,0.2458440838381648
101
+ 0,100000,0.24566156789660454
102
+ 0,101000,0.24600222241133451
103
+ 0,102000,0.24566147476434708
104
+ 0,103000,0.2461111405864358
105
+ 0,104000,0.2459018025547266
106
+ 0,105000,0.24577155709266663
107
+ 0,106000,0.2457206603139639
108
+ 0,107000,0.24565793573856354
109
+ 0,108000,0.24591167457401752
110
+ 0,109000,0.24543707258999348
111
+ 0,110000,0.24535527918487787
112
+ 0,111000,0.2456084592267871
113
+ 0,112000,0.24576487485319376
114
+ 0,113000,0.24569914676249027
115
+ 0,114000,0.24549257941544056
116
+ 0,115000,0.24552540853619576
117
+ 0,116000,0.2456445712596178
 
 
 
 
 
 
 
eval/translation_evaluation_TED2020-en-sv-dev.tsv.gz_results.csv CHANGED
@@ -1,124 +1,117 @@
1
  epoch,steps,src2trg,trg2src
2
- 0,1000,0.973,0.971
3
- 0,2000,0.973,0.973
4
- 0,3000,0.974,0.969
5
- 0,4000,0.974,0.97
6
- 0,5000,0.974,0.972
7
- 0,6000,0.975,0.97
8
- 0,7000,0.975,0.971
9
- 0,8000,0.974,0.97
10
- 0,9000,0.976,0.968
11
- 0,10000,0.974,0.97
12
- 0,11000,0.975,0.972
13
- 0,12000,0.975,0.969
14
- 0,13000,0.975,0.97
15
- 0,14000,0.975,0.97
16
- 0,15000,0.975,0.967
17
- 0,16000,0.973,0.971
18
- 0,17000,0.974,0.973
19
- 0,18000,0.974,0.971
20
- 0,19000,0.974,0.971
21
- 0,20000,0.975,0.972
22
- 0,21000,0.975,0.971
23
- 0,22000,0.974,0.974
24
- 0,23000,0.974,0.974
25
- 0,24000,0.974,0.973
26
- 0,25000,0.974,0.971
27
- 0,26000,0.975,0.972
28
- 0,27000,0.975,0.972
29
- 0,28000,0.974,0.973
30
- 0,29000,0.973,0.973
31
- 0,30000,0.974,0.973
32
- 0,31000,0.975,0.973
33
- 0,32000,0.975,0.973
34
- 0,33000,0.975,0.973
35
- 0,34000,0.975,0.973
36
- 0,35000,0.975,0.973
37
- 0,36000,0.975,0.973
38
- 0,37000,0.975,0.972
39
- 0,38000,0.974,0.972
40
- 0,39000,0.974,0.972
41
- 0,40000,0.976,0.973
42
- 0,41000,0.976,0.973
43
- 0,42000,0.976,0.973
44
- 0,43000,0.975,0.973
45
- 0,44000,0.974,0.972
46
- 0,45000,0.975,0.972
47
- 0,46000,0.975,0.972
48
- 0,47000,0.974,0.972
49
- 0,48000,0.974,0.971
50
- 0,49000,0.976,0.973
51
- 0,50000,0.975,0.972
52
- 0,51000,0.975,0.972
53
- 0,52000,0.976,0.973
54
- 0,53000,0.975,0.972
55
- 0,54000,0.975,0.973
56
- 0,55000,0.976,0.973
57
- 0,56000,0.975,0.973
58
- 0,57000,0.976,0.973
59
- 0,58000,0.975,0.973
60
- 0,59000,0.975,0.973
61
- 0,60000,0.976,0.973
62
- 0,61000,0.976,0.973
63
- 0,62000,0.976,0.972
64
- 0,63000,0.975,0.973
65
- 0,64000,0.976,0.972
66
- 0,65000,0.974,0.973
67
- 0,66000,0.975,0.973
68
- 0,67000,0.975,0.973
69
- 0,68000,0.975,0.973
70
- 0,69000,0.975,0.973
71
- 0,70000,0.975,0.972
72
- 0,71000,0.975,0.972
73
- 0,72000,0.975,0.972
74
- 0,73000,0.974,0.972
75
- 0,74000,0.975,0.973
76
- 0,75000,0.976,0.973
77
- 0,76000,0.975,0.973
78
- 0,77000,0.976,0.973
79
- 0,78000,0.976,0.972
80
- 0,79000,0.976,0.973
81
- 0,80000,0.975,0.973
82
- 0,81000,0.975,0.974
83
- 0,82000,0.976,0.973
84
- 0,83000,0.976,0.973
85
- 0,84000,0.976,0.973
86
- 0,85000,0.976,0.974
87
- 0,86000,0.975,0.974
88
- 0,87000,0.975,0.974
89
- 0,88000,0.975,0.974
90
- 0,89000,0.975,0.974
91
- 0,90000,0.976,0.974
92
- 0,91000,0.975,0.974
93
- 0,92000,0.975,0.973
94
- 0,93000,0.975,0.973
95
- 0,94000,0.976,0.973
96
- 0,95000,0.976,0.973
97
- 0,96000,0.976,0.974
98
- 0,97000,0.976,0.973
99
- 0,98000,0.976,0.973
100
- 0,99000,0.975,0.974
101
- 0,100000,0.975,0.973
102
- 0,101000,0.975,0.973
103
- 0,102000,0.974,0.974
104
- 0,103000,0.976,0.974
105
- 0,104000,0.975,0.974
106
- 0,105000,0.976,0.974
107
- 0,106000,0.974,0.973
108
- 0,107000,0.977,0.973
109
- 0,108000,0.976,0.974
110
- 0,109000,0.975,0.974
111
- 0,110000,0.976,0.974
112
- 0,111000,0.976,0.974
113
- 0,112000,0.975,0.974
114
- 0,113000,0.976,0.975
115
- 0,114000,0.977,0.974
116
- 0,115000,0.976,0.974
117
- 0,116000,0.975,0.975
118
- 0,117000,0.975,0.974
119
- 0,118000,0.976,0.974
120
- 0,119000,0.976,0.974
121
- 0,120000,0.976,0.974
122
- 0,121000,0.976,0.974
123
- 0,122000,0.976,0.974
124
- 0,123000,0.975,0.974
 
1
  epoch,steps,src2trg,trg2src
2
+ 0,1000,0.971,0.971
3
+ 0,2000,0.971,0.971
4
+ 0,3000,0.97,0.972
5
+ 0,4000,0.971,0.972
6
+ 0,5000,0.971,0.971
7
+ 0,6000,0.971,0.972
8
+ 0,7000,0.971,0.972
9
+ 0,8000,0.971,0.973
10
+ 0,9000,0.97,0.971
11
+ 0,10000,0.97,0.97
12
+ 0,11000,0.97,0.97
13
+ 0,12000,0.97,0.971
14
+ 0,13000,0.969,0.97
15
+ 0,14000,0.97,0.971
16
+ 0,15000,0.97,0.971
17
+ 0,16000,0.97,0.971
18
+ 0,17000,0.971,0.971
19
+ 0,18000,0.971,0.971
20
+ 0,19000,0.97,0.971
21
+ 0,20000,0.97,0.971
22
+ 0,21000,0.97,0.971
23
+ 0,22000,0.97,0.971
24
+ 0,23000,0.971,0.971
25
+ 0,24000,0.97,0.971
26
+ 0,25000,0.97,0.971
27
+ 0,26000,0.97,0.97
28
+ 0,27000,0.97,0.971
29
+ 0,28000,0.97,0.971
30
+ 0,29000,0.97,0.97
31
+ 0,30000,0.969,0.971
32
+ 0,31000,0.97,0.97
33
+ 0,32000,0.97,0.97
34
+ 0,33000,0.969,0.971
35
+ 0,34000,0.97,0.971
36
+ 0,35000,0.97,0.969
37
+ 0,36000,0.97,0.971
38
+ 0,37000,0.97,0.969
39
+ 0,38000,0.97,0.971
40
+ 0,39000,0.97,0.971
41
+ 0,40000,0.971,0.971
42
+ 0,41000,0.97,0.971
43
+ 0,42000,0.97,0.971
44
+ 0,43000,0.97,0.971
45
+ 0,44000,0.971,0.971
46
+ 0,45000,0.969,0.971
47
+ 0,46000,0.969,0.972
48
+ 0,47000,0.971,0.971
49
+ 0,48000,0.971,0.971
50
+ 0,49000,0.971,0.97
51
+ 0,50000,0.97,0.971
52
+ 0,51000,0.972,0.97
53
+ 0,52000,0.97,0.971
54
+ 0,53000,0.97,0.971
55
+ 0,54000,0.97,0.971
56
+ 0,55000,0.97,0.971
57
+ 0,56000,0.97,0.971
58
+ 0,57000,0.97,0.971
59
+ 0,58000,0.969,0.971
60
+ 0,59000,0.972,0.971
61
+ 0,60000,0.971,0.97
62
+ 0,61000,0.971,0.971
63
+ 0,62000,0.971,0.971
64
+ 0,63000,0.971,0.97
65
+ 0,64000,0.971,0.971
66
+ 0,65000,0.971,0.971
67
+ 0,66000,0.971,0.971
68
+ 0,67000,0.971,0.971
69
+ 0,68000,0.97,0.971
70
+ 0,69000,0.971,0.971
71
+ 0,70000,0.971,0.971
72
+ 0,71000,0.971,0.97
73
+ 0,72000,0.971,0.971
74
+ 0,73000,0.971,0.971
75
+ 0,74000,0.97,0.971
76
+ 0,75000,0.971,0.971
77
+ 0,76000,0.971,0.97
78
+ 0,77000,0.971,0.971
79
+ 0,78000,0.971,0.971
80
+ 0,79000,0.971,0.97
81
+ 0,80000,0.97,0.971
82
+ 0,81000,0.97,0.971
83
+ 0,82000,0.971,0.97
84
+ 0,83000,0.971,0.97
85
+ 0,84000,0.971,0.97
86
+ 0,85000,0.97,0.97
87
+ 0,86000,0.971,0.971
88
+ 0,87000,0.971,0.971
89
+ 0,88000,0.971,0.971
90
+ 0,89000,0.971,0.97
91
+ 0,90000,0.97,0.97
92
+ 0,91000,0.971,0.971
93
+ 0,92000,0.97,0.97
94
+ 0,93000,0.97,0.97
95
+ 0,94000,0.97,0.971
96
+ 0,95000,0.97,0.97
97
+ 0,96000,0.97,0.97
98
+ 0,97000,0.97,0.971
99
+ 0,98000,0.97,0.971
100
+ 0,99000,0.971,0.971
101
+ 0,100000,0.97,0.971
102
+ 0,101000,0.971,0.971
103
+ 0,102000,0.97,0.971
104
+ 0,103000,0.97,0.97
105
+ 0,104000,0.97,0.971
106
+ 0,105000,0.97,0.971
107
+ 0,106000,0.971,0.97
108
+ 0,107000,0.97,0.97
109
+ 0,108000,0.971,0.971
110
+ 0,109000,0.971,0.97
111
+ 0,110000,0.971,0.97
112
+ 0,111000,0.971,0.971
113
+ 0,112000,0.971,0.971
114
+ 0,113000,0.971,0.971
115
+ 0,114000,0.971,0.97
116
+ 0,115000,0.97,0.969
117
+ 0,116000,0.97,0.97
 
 
 
 
 
 
 
eval/translation_evaluation_Tatoeba-eng-swe-dev.tsv.gz_results.csv CHANGED
@@ -1,124 +1,117 @@
1
  epoch,steps,src2trg,trg2src
2
- 0,1000,0.97,0.97
3
- 0,2000,0.968,0.97
4
- 0,3000,0.967,0.97
5
- 0,4000,0.967,0.969
6
- 0,5000,0.967,0.969
7
- 0,6000,0.969,0.969
8
- 0,7000,0.967,0.969
9
- 0,8000,0.967,0.971
10
- 0,9000,0.966,0.968
11
- 0,10000,0.966,0.971
12
- 0,11000,0.965,0.97
13
- 0,12000,0.965,0.97
14
- 0,13000,0.967,0.97
15
- 0,14000,0.969,0.97
16
- 0,15000,0.969,0.97
17
- 0,16000,0.967,0.97
18
- 0,17000,0.967,0.97
19
- 0,18000,0.967,0.97
20
- 0,19000,0.965,0.97
21
- 0,20000,0.966,0.969
22
- 0,21000,0.967,0.969
23
- 0,22000,0.967,0.97
24
- 0,23000,0.966,0.969
25
- 0,24000,0.966,0.97
26
- 0,25000,0.965,0.971
27
- 0,26000,0.965,0.97
28
- 0,27000,0.966,0.97
29
- 0,28000,0.967,0.971
30
- 0,29000,0.968,0.97
31
- 0,30000,0.969,0.97
32
- 0,31000,0.969,0.968
33
- 0,32000,0.967,0.969
34
- 0,33000,0.967,0.969
35
- 0,34000,0.967,0.969
36
- 0,35000,0.968,0.97
37
- 0,36000,0.968,0.97
38
- 0,37000,0.967,0.968
39
- 0,38000,0.968,0.97
40
- 0,39000,0.967,0.968
41
- 0,40000,0.966,0.968
42
- 0,41000,0.966,0.969
43
- 0,42000,0.967,0.97
44
- 0,43000,0.967,0.97
45
- 0,44000,0.967,0.97
46
- 0,45000,0.967,0.969
47
- 0,46000,0.965,0.968
48
- 0,47000,0.966,0.969
49
- 0,48000,0.965,0.969
50
- 0,49000,0.965,0.967
51
- 0,50000,0.966,0.97
52
- 0,51000,0.967,0.97
53
- 0,52000,0.965,0.97
54
- 0,53000,0.967,0.969
55
- 0,54000,0.967,0.969
56
- 0,55000,0.965,0.97
57
- 0,56000,0.967,0.969
58
- 0,57000,0.968,0.97
59
- 0,58000,0.966,0.97
60
- 0,59000,0.967,0.97
61
- 0,60000,0.97,0.969
62
- 0,61000,0.967,0.97
63
- 0,62000,0.967,0.969
64
- 0,63000,0.967,0.969
65
- 0,64000,0.966,0.969
66
- 0,65000,0.967,0.97
67
- 0,66000,0.968,0.97
68
- 0,67000,0.965,0.969
69
- 0,68000,0.966,0.97
70
- 0,69000,0.967,0.97
71
- 0,70000,0.966,0.97
72
- 0,71000,0.964,0.968
73
- 0,72000,0.965,0.969
74
- 0,73000,0.968,0.97
75
- 0,74000,0.967,0.97
76
- 0,75000,0.966,0.97
77
- 0,76000,0.967,0.969
78
- 0,77000,0.967,0.969
79
- 0,78000,0.966,0.969
80
- 0,79000,0.966,0.97
81
- 0,80000,0.966,0.969
82
- 0,81000,0.966,0.969
83
- 0,82000,0.966,0.968
84
- 0,83000,0.965,0.969
85
- 0,84000,0.967,0.969
86
- 0,85000,0.966,0.969
87
- 0,86000,0.966,0.969
88
- 0,87000,0.967,0.968
89
- 0,88000,0.966,0.968
90
- 0,89000,0.967,0.969
91
- 0,90000,0.968,0.967
92
- 0,91000,0.967,0.968
93
- 0,92000,0.966,0.969
94
- 0,93000,0.967,0.968
95
- 0,94000,0.968,0.969
96
- 0,95000,0.967,0.969
97
- 0,96000,0.968,0.969
98
- 0,97000,0.967,0.97
99
- 0,98000,0.969,0.968
100
- 0,99000,0.967,0.969
101
- 0,100000,0.966,0.97
102
- 0,101000,0.965,0.969
103
- 0,102000,0.966,0.969
104
- 0,103000,0.966,0.97
105
- 0,104000,0.965,0.97
106
- 0,105000,0.968,0.969
107
- 0,106000,0.966,0.969
108
- 0,107000,0.966,0.968
109
- 0,108000,0.965,0.969
110
- 0,109000,0.966,0.969
111
- 0,110000,0.964,0.969
112
- 0,111000,0.964,0.969
113
- 0,112000,0.965,0.968
114
- 0,113000,0.965,0.968
115
- 0,114000,0.964,0.969
116
- 0,115000,0.966,0.97
117
- 0,116000,0.967,0.97
118
- 0,117000,0.966,0.97
119
- 0,118000,0.966,0.969
120
- 0,119000,0.964,0.969
121
- 0,120000,0.966,0.969
122
- 0,121000,0.966,0.97
123
- 0,122000,0.967,0.97
124
- 0,123000,0.966,0.97
 
1
  epoch,steps,src2trg,trg2src
2
+ 0,1000,0.97,0.967
3
+ 0,2000,0.97,0.968
4
+ 0,3000,0.97,0.967
5
+ 0,4000,0.97,0.968
6
+ 0,5000,0.971,0.967
7
+ 0,6000,0.97,0.966
8
+ 0,7000,0.971,0.968
9
+ 0,8000,0.97,0.968
10
+ 0,9000,0.971,0.966
11
+ 0,10000,0.969,0.968
12
+ 0,11000,0.97,0.967
13
+ 0,12000,0.967,0.967
14
+ 0,13000,0.969,0.965
15
+ 0,14000,0.971,0.966
16
+ 0,15000,0.971,0.967
17
+ 0,16000,0.97,0.965
18
+ 0,17000,0.969,0.965
19
+ 0,18000,0.967,0.967
20
+ 0,19000,0.969,0.966
21
+ 0,20000,0.968,0.967
22
+ 0,21000,0.968,0.966
23
+ 0,22000,0.967,0.965
24
+ 0,23000,0.97,0.966
25
+ 0,24000,0.969,0.967
26
+ 0,25000,0.967,0.967
27
+ 0,26000,0.968,0.968
28
+ 0,27000,0.967,0.965
29
+ 0,28000,0.968,0.966
30
+ 0,29000,0.967,0.967
31
+ 0,30000,0.968,0.968
32
+ 0,31000,0.966,0.967
33
+ 0,32000,0.967,0.967
34
+ 0,33000,0.969,0.967
35
+ 0,34000,0.969,0.967
36
+ 0,35000,0.968,0.967
37
+ 0,36000,0.969,0.967
38
+ 0,37000,0.969,0.967
39
+ 0,38000,0.968,0.968
40
+ 0,39000,0.969,0.966
41
+ 0,40000,0.965,0.968
42
+ 0,41000,0.968,0.966
43
+ 0,42000,0.968,0.969
44
+ 0,43000,0.968,0.969
45
+ 0,44000,0.969,0.969
46
+ 0,45000,0.966,0.967
47
+ 0,46000,0.966,0.968
48
+ 0,47000,0.968,0.967
49
+ 0,48000,0.966,0.968
50
+ 0,49000,0.967,0.968
51
+ 0,50000,0.966,0.969
52
+ 0,51000,0.967,0.967
53
+ 0,52000,0.967,0.968
54
+ 0,53000,0.968,0.968
55
+ 0,54000,0.968,0.966
56
+ 0,55000,0.968,0.967
57
+ 0,56000,0.968,0.968
58
+ 0,57000,0.968,0.967
59
+ 0,58000,0.969,0.967
60
+ 0,59000,0.969,0.967
61
+ 0,60000,0.97,0.966
62
+ 0,61000,0.969,0.968
63
+ 0,62000,0.968,0.97
64
+ 0,63000,0.969,0.969
65
+ 0,64000,0.969,0.968
66
+ 0,65000,0.969,0.969
67
+ 0,66000,0.968,0.965
68
+ 0,67000,0.969,0.968
69
+ 0,68000,0.968,0.967
70
+ 0,69000,0.968,0.968
71
+ 0,70000,0.97,0.968
72
+ 0,71000,0.97,0.969
73
+ 0,72000,0.967,0.968
74
+ 0,73000,0.967,0.968
75
+ 0,74000,0.968,0.967
76
+ 0,75000,0.969,0.965
77
+ 0,76000,0.969,0.968
78
+ 0,77000,0.968,0.965
79
+ 0,78000,0.968,0.966
80
+ 0,79000,0.97,0.966
81
+ 0,80000,0.969,0.968
82
+ 0,81000,0.969,0.967
83
+ 0,82000,0.968,0.967
84
+ 0,83000,0.969,0.967
85
+ 0,84000,0.968,0.967
86
+ 0,85000,0.968,0.969
87
+ 0,86000,0.97,0.966
88
+ 0,87000,0.968,0.969
89
+ 0,88000,0.967,0.97
90
+ 0,89000,0.967,0.967
91
+ 0,90000,0.967,0.968
92
+ 0,91000,0.967,0.967
93
+ 0,92000,0.968,0.967
94
+ 0,93000,0.971,0.966
95
+ 0,94000,0.97,0.968
96
+ 0,95000,0.967,0.964
97
+ 0,96000,0.967,0.966
98
+ 0,97000,0.969,0.964
99
+ 0,98000,0.969,0.966
100
+ 0,99000,0.969,0.967
101
+ 0,100000,0.968,0.967
102
+ 0,101000,0.967,0.966
103
+ 0,102000,0.967,0.967
104
+ 0,103000,0.967,0.967
105
+ 0,104000,0.967,0.966
106
+ 0,105000,0.966,0.967
107
+ 0,106000,0.968,0.968
108
+ 0,107000,0.968,0.966
109
+ 0,108000,0.967,0.968
110
+ 0,109000,0.967,0.967
111
+ 0,110000,0.968,0.969
112
+ 0,111000,0.967,0.968
113
+ 0,112000,0.967,0.968
114
+ 0,113000,0.967,0.966
115
+ 0,114000,0.966,0.966
116
+ 0,115000,0.966,0.967
117
+ 0,116000,0.966,0.966
 
 
 
 
 
 
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:20f6199b13486aae2679b27b5e8830fe4ec79c7823c346a5227850695ed7a1d6
3
  size 498834989
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bea01d07d85dc7870dfd9907ca78bac21ee8b1ef81c838f25a88b6494c79b32
3
  size 498834989
tokenizer_config.json CHANGED
@@ -4,7 +4,7 @@
4
  "do_lower_case": false,
5
  "mask_token": "[MASK]",
6
  "model_max_length": 1000000000000000019884624838656,
7
- "name_or_path": "output/original-en-sv-2022-12-20_16-52-40/",
8
  "never_split": null,
9
  "pad_token": "[PAD]",
10
  "sep_token": "[SEP]",
 
4
  "do_lower_case": false,
5
  "mask_token": "[MASK]",
6
  "model_max_length": 1000000000000000019884624838656,
7
+ "name_or_path": "output/no-normalize-en-sv-2022-12-26_18-39-42/",
8
  "never_split": null,
9
  "pad_token": "[PAD]",
10
  "sep_token": "[SEP]",