KBlueLeaf commited on
Commit
a8630de
·
verified ·
1 Parent(s): 5300b97

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ datasets:
4
+ - laion/conceptual-captions-12m-webdataset
5
+ - CaptionEmporium/coyo-hd-11m-llavanext
6
+ - KBlueLeaf/danbooru2023-metadata-database
7
+ - graph-based-captions/GBC10M
8
+ language:
9
+ - en
10
+ pipeline_tag: text-generation
11
+ library_name: transformers
12
+ ---
13
+ # TIPO: Text to Image with text presampling for Prompt Optimization
14
+
15
+ 200M LLaMA arch model trained for TIPO.
16
+
17
+
18
+ ## Introduction
19
+
20
+ In this project, we introduce "TIPO" (**T**ext to **I**mage with text presampling for **P**rompt **O**ptimization), an innovative framework designed to significantly enhance the quality and usability of Text-to-Image (T2I) generative models. TIPO utilizes the Large Language Models (LLMs) to perform "Text Presampling" within the inference pipeline of text-to-image generative modeling. By refining and extending user input prompts, TIPO enables generative models to produce superior results with minimal user effort, making T2I systems more accessible and effective for a wider range of users.
21
+
22
+ ## Usage
23
+ Use updated version of DTG extension (renamed to z-tipo-ext), current version of z-tipo-ext support stable-diffusion-webui, stable-diffusion-webui-forge and ComfyUI. SD-Next haven't been tested.
24
+
25
+ ## Metric
26
+ We have tested TIPO in several metric:
27
+
28
+ #### 1. Aesthetic Score (Higher is Better)
29
+
30
+ We compute the Aesthetic Score using the **Aesthetic Predictor V2.5**. This metric is calculated on the short/truncated long test.
31
+
32
+ ![Aesthetic Score Distribution](https://hackmd.io/_uploads/HkJphkSCA.png)
33
+
34
+ *Figure 1: Aesthetic Score distribution.*
35
+
36
+ #### 2. AI Corrupt Score (Higher is Better)
37
+
38
+ The AI Corrupt Score is obtained from the **AICorruptMetrics** in **sdeval**.
39
+
40
+ This metric is calculated on the short/truncated long test.
41
+
42
+ ![AI Corrupt Score Distribution](https://hackmd.io/_uploads/SJlktvE0R.png)
43
+
44
+ *Figure 2: AI Corrupt Score distribution.*
45
+
46
+ #### 3. Frechet Dino Distance (FDD) on Scenery Tag Test
47
+
48
+ We use FDD on the Scenery Tag Test to demonstrate that when input prompts address a smaller distribution, the model struggles to generate images that reflect the true distribution. However, with **TIPO**, this issue is mitigated.
49
+
50
+ | FDD Model | `<meta> scenery` only | `<meta> scenery` + TIPO |
51
+ |------------------|-----------------------|-------------------------|
52
+ | DinoV2 ViT-S | 0.1917 | **0.1786** |
53
+ | DinoV2 ViT-B | 0.2002 | **0.1755** |
54
+ | DinoV2 ViT-L | 0.2017 | **0.1863** |
55
+ | DinoV2 ViT-G | 0.2359 | **0.2096** |
56
+
57
+ *Table 1: Frechet Dino Distance (FDD) on Scenery Tag Test.*
58
+
59
+ ## LICENSE
60
+ This model is released under [Kohaku License 1.0](https://kblueleaf.net/documents/kohaku-license/?[Your%20Organization/Name]=KohakuBlueLeaf&[Year]=2024)<br>
61
+ You can check the above provided URL or check the LICENSE file in this repo.