KBlueLeaf commited on
Commit
2381485
1 Parent(s): edf23a3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: kohaku-license-1.0
4
+ datasets:
5
+ - laion/conceptual-captions-12m-webdataset
6
+ - CaptionEmporium/coyo-hd-11m-llavanext
7
+ - KBlueLeaf/danbooru2023-metadata-database
8
+ - graph-based-captions/GBC10M
9
+ language:
10
+ - en
11
+ pipeline_tag: text-generation
12
+ library_name: transformers
13
+ ---
14
+ # TIPO: Text to Image with text presampling for Prompt Optimization
15
+
16
+ 500M LLaMA arch model trained for TIPO.<br>
17
+ Tech Report: https://hackmd.io/@KBlueLeaf/BJULOQBR0
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630593e2fca1d8d92b81d2a1/fc9ovmARapQmgq9DZ7ApJ.png)
20
+
21
+ ## Introduction
22
+
23
+ In this project, we introduce "TIPO" (**T**ext to **I**mage with text presampling for **P**rompt **O**ptimization), an innovative framework designed to significantly enhance the quality and usability of Text-to-Image (T2I) generative models. TIPO utilizes the Large Language Models (LLMs) to perform "Text Presampling" within the inference pipeline of text-to-image generative modeling. By refining and extending user input prompts, TIPO enables generative models to produce superior results with minimal user effort, making T2I systems more accessible and effective for a wider range of users.
24
+
25
+ ## Usage
26
+ Use updated version of DTG extension (renamed to z-tipo-extension), current version of z-tipo-extension support stable-diffusion-webui, stable-diffusion-webui-forge and ComfyUI. SD-Next haven't been tested.
27
+ https://github.com/KohakuBlueleaf/z-tipo-extension
28
+
29
+ ## Model arch and Training
30
+ This model is LLaMA arch with 500M parameters, the training data is combined version of Danbooru2023, GBC10M and Coyo-HD-11M.<br>
31
+ The total token seen is around 30B tokens.<br>
32
+ For more information please refer to the tech report.
33
+
34
+ ### Evaluation
35
+ We have tested TIPO in several metric:
36
+
37
+ #### 1. Aesthetic Score (Higher is Better)
38
+
39
+ We compute the Aesthetic Score using the **Aesthetic Predictor V2.5**. This metric is calculated on the short/truncated long test.
40
+
41
+ ![Aesthetic Score Distribution](https://hackmd.io/_uploads/HkJphkSCA.png)
42
+
43
+ *Figure 1: Aesthetic Score distribution.*
44
+
45
+ #### 2. AI Corrupt Score (Higher is Better)
46
+
47
+ The AI Corrupt Score is obtained from the **AICorruptMetrics** in **sdeval**.
48
+
49
+ This metric is calculated on the short/truncated long test.
50
+
51
+ ![AI Corrupt Score Distribution](https://hackmd.io/_uploads/SJlktvE0R.png)
52
+
53
+ *Figure 2: AI Corrupt Score distribution.*
54
+
55
+ #### 3. Frechet Dino Distance (FDD) on Scenery Tag Test
56
+
57
+ We use FDD on the Scenery Tag Test to demonstrate that when input prompts address a smaller distribution, the model struggles to generate images that reflect the true distribution. However, with **TIPO**, this issue is mitigated.
58
+
59
+ | FDD Model | `<meta> scenery` only | `<meta> scenery` + TIPO |
60
+ |------------------|-----------------------|-------------------------|
61
+ | DinoV2 ViT-S | 0.1917 | **0.1786** |
62
+ | DinoV2 ViT-B | 0.2002 | **0.1755** |
63
+ | DinoV2 ViT-L | 0.2017 | **0.1863** |
64
+ | DinoV2 ViT-G | 0.2359 | **0.2096** |
65
+
66
+ *Table 1: Frechet Dino Distance (FDD) on Scenery Tag Test.*
67
+
68
+ ## LICENSE
69
+ This model is released under [Kohaku License 1.0](https://kblueleaf.net/documents/kohaku-license/?[Your%20Organization/Name]=KohakuBlueLeaf&[Year]=2024)<br>
70
+ You can check the above provided URL or check the LICENSE file in this repo.