File size: 2,742 Bytes
e2be03a
 
ec160ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2be03a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
widget:
- text: >-
    translate_ko2en: IBM 왓슨X는 AI 및 데이터 플랫폼이다. 신뢰할 수 있는 데이터, 속도, 거버넌스를 갖고 파운데이션
    모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를
    제공한다.
  example_title: KO2EN 1
- text: >-
    translate_ko2en: 이용자는 신뢰할 수 있고 개방된 환경에서 자신의 데이터에 대해 자체적인 AI를 구축하거나, 시장에 출시된
    AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수 있다.
  example_title: KO2EN 2
- text: >-
    translate_en2ko: The Seoul Metropolitan Government said Wednesday that it
    would develop an AI-based congestion monitoring system to provide better
    information to passengers about crowd density at each subway station.
  example_title: EN2KO 1
- text: >-
    translate_en2ko: According to Seoul Metro, the operator of the subway
    service in Seoul, the new service will help analyze the real-time flow of
    passengers and crowd levels in subway compartments, improving operational
    efficiency.
  example_title: EN2KO 2
language:
- ko
- en
pipeline_tag: translation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ko2en_bidirection

This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the csv_dataset.py dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6808
- Bleu: 52.2152
- Gen Len: 396.0215

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:----:|:-------:|
| 0.5962        | 1.0   | 750093 | 0.6808          | 0.0  | 18.369  |


### Framework versions

- Transformers 4.28.1
- Pytorch 1.13.0
- Datasets 2.9.0
- Tokenizers 0.13.2