Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`KETI-AIR/long-ke-t5-base`](https://huggingface.co/KETI-AIR/long-ke-t5-base) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!
@@ -1,30 +1,25 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
widget:
|
4 |
-
- text:
|
5 |
-
|
6 |
-
모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를
|
7 |
-
제공한다.
|
8 |
example_title: KO2EN 1
|
9 |
-
- text:
|
10 |
-
|
11 |
-
AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수 있다.
|
12 |
example_title: KO2EN 2
|
13 |
-
- text:
|
14 |
-
|
15 |
-
|
16 |
-
information to passengers about crowd density at each subway station.
|
17 |
example_title: EN2KO 1
|
18 |
-
- text:
|
19 |
-
|
20 |
-
|
21 |
-
passengers and crowd levels in subway compartments, improving operational
|
22 |
-
efficiency.
|
23 |
example_title: EN2KO 2
|
24 |
-
language:
|
25 |
-
- ko
|
26 |
-
- en
|
27 |
pipeline_tag: translation
|
|
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
- en
|
5 |
license: apache-2.0
|
6 |
widget:
|
7 |
+
- text: 'translate_ko2en: IBM 왓슨X는 AI 및 데이터 플랫폼이다. 신뢰할 수 있는 데이터, 속도, 거버넌스를 갖고 파운데이션
|
8 |
+
모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를 제공한다.'
|
|
|
|
|
9 |
example_title: KO2EN 1
|
10 |
+
- text: 'translate_ko2en: 이용자는 신뢰할 수 있고 개방된 환경에서 자신의 데이터에 대해 자체적인 AI를 구축하거나, 시장에 출시된
|
11 |
+
AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수 있다.'
|
|
|
12 |
example_title: KO2EN 2
|
13 |
+
- text: 'translate_en2ko: The Seoul Metropolitan Government said Wednesday that it
|
14 |
+
would develop an AI-based congestion monitoring system to provide better information
|
15 |
+
to passengers about crowd density at each subway station.'
|
|
|
16 |
example_title: EN2KO 1
|
17 |
+
- text: 'translate_en2ko: According to Seoul Metro, the operator of the subway service
|
18 |
+
in Seoul, the new service will help analyze the real-time flow of passengers and
|
19 |
+
crowd levels in subway compartments, improving operational efficiency.'
|
|
|
|
|
20 |
example_title: EN2KO 2
|
|
|
|
|
|
|
21 |
pipeline_tag: translation
|
22 |
+
base_model: KETI-AIR/long-ke-t5-base
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|