--- language: - ko - en tags: - generated_from_trainer datasets: - >- KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation metrics: - bleu model-index: - name: ko2en results: - task: name: Translation type: translation dataset: name: >- KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation koen,none,none,none,none type: >- KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation args: koen,none,none,none,none metrics: - name: Bleu type: bleu value: 58.7008 license: apache-2.0 pipeline_tag: translation widget: - text: "translate_ko2en: IBM 왓슨X는 AI 및 데이터 플랫폼이다. 신뢰할 수 있는 데이터, 속도, 거버넌스를 갖고 파운데이션 모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를 제공한다." example_title: "Sample 1" - text: "translate_ko2en: 이용자는 신뢰할 수 있고 개방된 환경에서 자신의 데이터에 대해 자체적인 AI를 구축하거나, 시장에 출시된 AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수 있다." example_title: "Sample 2" --- # ko2en This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation koen,none,none,none,none dataset. It achieves the following results on the evaluation set: - Loss: 0.5186 - Bleu: 58.7008 - Gen Len: 27.0073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 0.6234 | 1.0 | 93762 | 0.5843 | 33.9843 | 17.5378 | | 0.5334 | 2.0 | 187524 | 0.5369 | 35.3271 | 17.5388 | | 0.4704 | 3.0 | 281286 | 0.5186 | 36.0533 | 17.5335 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.0 - Datasets 2.8.0 - Tokenizers 0.13.2