KPOETA commited on
Commit
31a9080
1 Parent(s): 1616097

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2002
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: KPOETA/BERTO-LOS-MUCHACHOS-1
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2002
20
+ type: conll2002
21
+ config: es
22
+ split: validation
23
+ args: es
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.880600409370025
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8897058823529411
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8851297291118985
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9806463992982264
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # xml-roberta-large-finetuned-ner
43
+
44
+ Este es modelo resultado de un finetuning de
45
+ [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) sobre el conll2002 dataset.
46
+ Los siguientes son los resultados sobre el conjunto de evaluación:
47
+ - Loss: 0.092
48
+ - Precision: 0.8768651513038626
49
+ - Recall: 0.8833942118572633
50
+ - F1: 0.8768651513038628
51
+ - Accuracy: 0.982701988941157
52
+
53
+ ## Model description
54
+
55
+ Este es el modelo más grande de roberta [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english)-
56
+ Este modelo fue ajustado usando el framework Kaggle [https://www.kaggle.com/settings]. Para realizar el preentrenamiento del modelo se tuvo que crear un directorio temporal en Kaggle
57
+ con el fin de almacenar de manera temoporal el modelo que pesa alrededor de 35 Gz.
58
+
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 4
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 5
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
72
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
73
+ | 0.0743 | 1.0 | 2081 | 0.1131 | 0.8385 | 0.8587 | 0.8485 | 0.9771 |
74
+ | 0.049 | 2.0 | 4162 | 0.1429 | 0.8492 | 0.8564 | 0.8528 | 0.9756 |
75
+ | 0.031 | 3.0 | 6243 | 0.1298 | 0.8758 | 0.8817 | 0.8787 | 0.9800 |
76
+ | 0.0185 | 4.0 | 8324 | 0.1279 | 0.8827 | 0.8890 | 0.8859 | 0.9808 |
77
+ | 0.0125 | 5.0 | 10405 | 0.1364 | 0.8806 | 0.8897 | 0.8851 | 0.9806 |