Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- conll2002
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: KPOETA/BERTO-LOS-MUCHACHOS-1
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: conll2002
|
20 |
+
type: conll2002
|
21 |
+
config: es
|
22 |
+
split: validation
|
23 |
+
args: es
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.880600409370025
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.8897058823529411
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8851297291118985
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9806463992982264
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# xml-roberta-large-finetuned-ner
|
43 |
+
|
44 |
+
Este es modelo resultado de un finetuning de
|
45 |
+
[FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) sobre el conll2002 dataset.
|
46 |
+
Los siguientes son los resultados sobre el conjunto de evaluación:
|
47 |
+
- Loss: 0.092
|
48 |
+
- Precision: 0.8768651513038626
|
49 |
+
- Recall: 0.8833942118572633
|
50 |
+
- F1: 0.8768651513038628
|
51 |
+
- Accuracy: 0.982701988941157
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
Este es el modelo más grande de roberta [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english)-
|
56 |
+
Este modelo fue ajustado usando el framework Kaggle [https://www.kaggle.com/settings]. Para realizar el preentrenamiento del modelo se tuvo que crear un directorio temporal en Kaggle
|
57 |
+
con el fin de almacenar de manera temoporal el modelo que pesa alrededor de 35 Gz.
|
58 |
+
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 2e-05
|
62 |
+
- train_batch_size: 4
|
63 |
+
- eval_batch_size: 8
|
64 |
+
- seed: 42
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 5
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
72 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
73 |
+
| 0.0743 | 1.0 | 2081 | 0.1131 | 0.8385 | 0.8587 | 0.8485 | 0.9771 |
|
74 |
+
| 0.049 | 2.0 | 4162 | 0.1429 | 0.8492 | 0.8564 | 0.8528 | 0.9756 |
|
75 |
+
| 0.031 | 3.0 | 6243 | 0.1298 | 0.8758 | 0.8817 | 0.8787 | 0.9800 |
|
76 |
+
| 0.0185 | 4.0 | 8324 | 0.1279 | 0.8827 | 0.8890 | 0.8859 | 0.9808 |
|
77 |
+
| 0.0125 | 5.0 | 10405 | 0.1364 | 0.8806 | 0.8897 | 0.8851 | 0.9806 |
|