--- base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: KPOETA/BERTO-LOS-MUCHACHOS-1 results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.880600409370025 - name: Recall type: recall value: 0.8897058823529411 - name: F1 type: f1 value: 0.8851297291118985 - name: Accuracy type: accuracy value: 0.9806463992982264 --- # xml-roberta-large-finetuned-ner Este es modelo resultado de un finetuning de [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación: - Loss: 0.092 - Precision: 0.8768651513038626 - Recall: 0.8833942118572633 - F1: 0.8768651513038628 - Accuracy: 0.982701988941157 ## Model description Este es el modelo más grande de roberta [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english)- Este modelo fue ajustado usando el framework Kaggle [https://www.kaggle.com/settings]. Para realizar el preentrenamiento del modelo se tuvo que crear un directorio temporal en Kaggle con el fin de almacenar de manera temoporal el modelo que pesa alrededor de 35 Gz. The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0743 | 1.0 | 2081 | 0.1131 | 0.8385 | 0.8587 | 0.8485 | 0.9771 | | 0.049 | 2.0 | 4162 | 0.1429 | 0.8492 | 0.8564 | 0.8528 | 0.9756 | | 0.031 | 3.0 | 6243 | 0.1298 | 0.8758 | 0.8817 | 0.8787 | 0.9800 | | 0.0185 | 4.0 | 8324 | 0.1279 | 0.8827 | 0.8890 | 0.8859 | 0.9808 | | 0.0125 | 5.0 | 10405 | 0.1364 | 0.8806 | 0.8897 | 0.8851 | 0.9806 |