File size: 1,784 Bytes
de14745
 
 
 
 
 
 
b6f6be7
de14745
b6f6be7
de14745
b6f6be7
de14745
 
 
 
 
 
b6f6be7
de14745
 
 
 
 
b6f6be7
de14745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6f6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model:
- BioMistral/BioMistral-7B
- HuggingFaceH4/zephyr-7b-beta
tags:
- mergekit
- merge
license: apache-2.0
---
# BioMistral-Zephyr-Beta-SLERP

BioMistral-Zephyr-Beta-SLERP is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the SLERP merge method.

### 🤖💬 Models Merged

The following models were included in the merge:
* [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B)
* [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)

### 🧩 Configuration

The following YAML configuration was used to produce this model:

```yaml

slices:
  - sources:
      - model: BioMistral/BioMistral-7B
        layer_range: [0, 32]
      - model: HuggingFaceH4/zephyr-7b-beta
        layer_range: [0, 32]
merge_method: slerp
base_model: BioMistral/BioMistral-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

```

### 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kabster/BioMistral-Zephyr-Beta-SLERP"
messages = [{"role": "user", "content": "Can bisoprolol cause insomnia?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"])
```