File size: 1,784 Bytes
de14745 b6f6be7 de14745 b6f6be7 de14745 b6f6be7 de14745 b6f6be7 de14745 b6f6be7 de14745 b6f6be7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model:
- BioMistral/BioMistral-7B
- HuggingFaceH4/zephyr-7b-beta
tags:
- mergekit
- merge
license: apache-2.0
---
# BioMistral-Zephyr-Beta-SLERP
BioMistral-Zephyr-Beta-SLERP is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### 🤖💬 Models Merged
The following models were included in the merge:
* [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B)
* [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
### 🧩 Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: BioMistral/BioMistral-7B
layer_range: [0, 32]
- model: HuggingFaceH4/zephyr-7b-beta
layer_range: [0, 32]
merge_method: slerp
base_model: BioMistral/BioMistral-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
### 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kabster/BioMistral-Zephyr-Beta-SLERP"
messages = [{"role": "user", "content": "Can bisoprolol cause insomnia?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"])
``` |