File size: 15,176 Bytes
85d0291 ae0974a 77b2a83 b37695a 987e9e5 5805854 d7a3f35 5805854 d7a3f35 5805854 45a81f2 5805854 33fcb86 5805854 987e9e5 5805854 b37695a 5805854 b37695a 5805854 b37695a 5805854 b37695a 5805854 b37695a 987e9e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
---
license: mit
language:
- en
metrics:
- accuracy
tags:
- IT
- helpdesk
- classifier
- nlp
- natural-language
- classification
---
<details>
<summary>
TinyBERT based model
</summary>
### Fetching the model
```python
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
from sklearn.model_selection import train_test_split
import pandas as pd
from tqdm import tqdm
# Load the TinyBERT tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
model = AutoModelForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D', num_labels=2)
# fetch the statedict to apply the fine-tuned weights
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/tiny_bert_model.bin")
# if running on cpu
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/tiny_bert_model.bin", map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
```
### Using the model
```python
def predict_description(model, tokenizer, text, max_length=512):
model.eval() # Set the model to evaluation mode
# Ensure model is on the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Encode the input text
inputs = tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=max_length,
padding='max_length',
return_token_type_ids=False,
return_tensors='pt',
truncation=True
)
# Move tensors to the correct device
inputs = {key: value.to(device) for key, value in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_class_id = torch.argmax(probabilities, dim=-1).item()
return predicted_class_id, probabilities.cpu().tolist()
#Example usage
tickets = [
"""Inquiry about the possibility of customizing Docker to better meet department-specific needs.
Gathered requirements for desired customizations.""",
"""We've encountered a recurring problem with DEVEnv shutting down anytime we try to save documents.
I looked over the error logs for any clues about what's going wrong. I'm passing this on to the team responsible for software upkeep."""
]
for row in tickets:
prediction, probabilities = predict_description(model, tokenizer, row)
prediction = (['INCIDENT', 'TASK'])[prediction]
print(f"{prediction} ({probabilities}) <== {row['content']}")
```
### Additional fine-tuning
```python
# The dataset class
class TextDataset(Dataset):
def __init__(self, descriptions, labels, tokenizer, max_len):
self.descriptions = descriptions
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.descriptions)
def __getitem__(self, idx):
text = self.descriptions[idx]
inputs = self.tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
return_token_type_ids=False,
truncation=True
)
return {
'input_ids': torch.tensor(inputs['input_ids'], dtype=torch.long),
'attention_mask': torch.tensor(inputs['attention_mask'], dtype=torch.long),
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
}
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# load the data
df = pd.read_csv('..\\data\\final_data.csv')
df['label'] = df['type'].astype('category').cat.codes # Convert labels to category codes if they aren't already
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# create the training and validation sets and data loaders
print( "cuda is available" if torch.cuda.is_available() else "cuda is unavailable: running on cpu")
# Split the data into training and validation sets
train_df, val_df = train_test_split(df, test_size=0.15)
# Create PyTorch datasets
train_dataset = TextDataset(train_df['content'].tolist(), train_df['label'].tolist(), tokenizer, max_len=512)
val_dataset = TextDataset(val_df['content'].tolist(), val_df['label'].tolist(), tokenizer, max_len=512)
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# Train the model
# only these layers will be trained, customize this to your liking to freeze the ones you dont want to retrain
training_layers = [
"bert.encoder.layer.3.output.dense.weight",
"bert.encoder.layer.3.output.dense.bias",
"bert.encoder.layer.3.output.LayerNorm.weight",
"bert.encoder.layer.3.output.LayerNorm.bias",
"bert.pooler.dense.weight",
"bert.pooler.dense.bias",
"classifier.weight",
"classifier.bias",
]
for name, param in model.named_parameters():
if name not in training_layers: # Freeze layers that are not part of the classifier
param.requires_grad = False
# Training setup
optimizer = AdamW(model.parameters(), lr=5e-5)
epochs = 2
for epoch in range(epochs):
model.train()
loss_item = float('+inf')
for batch in tqdm(train_loader, desc=f"Training Loss: {loss_item}"):
batch = {k: v.to(model.device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_item = loss.item()
model.eval()
total_eval_accuracy = 0
for batch in tqdm(val_loader, desc=f"Validation Accuracy: {total_eval_accuracy}"):
batch = {k: v.to(model.device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
accuracy = (predictions == batch['labels']).cpu().numpy().mean()
total_eval_accuracy += accuracy
print(f"Validation Accuracy: {total_eval_accuracy / len(val_loader)}")
```
</details>
<details>
<summary>
DistilBERT based model
</summary>
### Fetching the model
```python
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
from sklearn.model_selection import train_test_split
import pandas as pd
from tqdm import tqdm
# Load the TinyBERT tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('distilbert/distilbert-base-uncased')
model = AutoModelForSequenceClassification.from_pretrained('distilbert/distilbert-base-uncased', num_labels=2)
# fetch the statedict to apply the fine-tuned weights
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/distilbert_1.bin")
# if running on cpu
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/distilbert_1.bin", map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
```
### Using the model
```python
def predict_description(model, tokenizer, text, max_length=512):
model.eval() # Set the model to evaluation mode
# Ensure model is on the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Encode the input text
inputs = tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=max_length,
padding='max_length',
return_token_type_ids=False,
return_tensors='pt',
truncation=True
)
# Move tensors to the correct device
inputs = {key: value.to(device) for key, value in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_class_id = torch.argmax(probabilities, dim=-1).item()
return predicted_class_id, probabilities.cpu().tolist()
#Example usage
tickets = [
"""Inquiry about the possibility of customizing Docker to better meet department-specific needs.
Gathered requirements for desired customizations.""",
"""We've encountered a recurring problem with DEVEnv shutting down anytime we try to save documents.
I looked over the error logs for any clues about what's going wrong. I'm passing this on to the team responsible for software upkeep."""
]
for row in tickets:
prediction, probabilities = predict_description(model, tokenizer, row)
prediction = (['INCIDENT', 'TASK'])[prediction]
print(f"{prediction} ({probabilities}) <== {row['content']}")
```
### Additional fine-tuning
```python
# The dataset class
class TextDataset(Dataset):
def __init__(self, descriptions, labels, tokenizer, max_len):
self.descriptions = descriptions
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.descriptions)
def __getitem__(self, idx):
text = self.descriptions[idx]
inputs = self.tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
return_token_type_ids=False,
truncation=True
)
return {
'input_ids': torch.tensor(inputs['input_ids'], dtype=torch.long),
'attention_mask': torch.tensor(inputs['attention_mask'], dtype=torch.long),
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
}
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# load the data
df = pd.read_csv('..\\data\\final_data.csv')
df['label'] = df['type'].astype('category').cat.codes # Convert labels to category codes if they aren't already
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# create the training and validation sets and data loaders
print( "cuda is available" if torch.cuda.is_available() else "cuda is unavailable: running on cpu")
# Split the data into training and validation sets
train_df, val_df = train_test_split(df, test_size=0.15)
# Create PyTorch datasets
train_dataset = TextDataset(train_df['content'].tolist(), train_df['label'].tolist(), tokenizer, max_len=512)
val_dataset = TextDataset(val_df['content'].tolist(), val_df['label'].tolist(), tokenizer, max_len=512)
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# Train the model
# only these layers will be trained, customize this to your liking to freeze the ones you dont want to retrain
training_layers = [
"distilbert.transformer.layer.5.ffn.lin2.weight",
"distilbert.transformer.layer.5.ffn.lin2.bias",
"distilbert.transformer.layer.5.output_layer_norm.weight",
"distilbert.transformer.layer.5.output_layer_norm.bias",
"pre_classifier.weight",
"pre_classifier.bias",
"classifier.weight",
"classifier.bias"
]
for name, param in model.named_parameters():
if name not in training_layers: # Freeze layers that are not part of the classifier
param.requires_grad = False
# if the model is not already on gpu, make sure to train it on gpu if available
# model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Training setup
optimizer = AdamW(model.parameters(), lr=5e-5)
epochs = 2
for epoch in range(epochs):
model.train()
loss_item = float('+inf')
for batch in tqdm(train_loader, desc=f"Training Loss: {loss_item}"):
batch = {k: v.to(model.device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_item = loss.item()
model.eval()
total_eval_accuracy = 0
for batch in tqdm(val_loader, desc=f"Validation Accuracy: {total_eval_accuracy}"):
batch = {k: v.to(model.device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
accuracy = (predictions == batch['labels']).cpu().numpy().mean()
total_eval_accuracy += accuracy
print(f"Validation Accuracy: {total_eval_accuracy / len(val_loader)}")
```
</details>
<details>
<summary>RoBERT based model</summary>
### Base model
```python
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import RobertaTokenizer, RobertaForSequenceClassification, AdamW
from sklearn.model_selection import train_test_split
import pandas as pd
# Load the tokenizer
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
# Load RoBERTa pre-trained model
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
# fetch the statedict to apply the fine-tuned weights
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/pytorch_model.bin")
# if running on cpu
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/pytorch_model.bin", map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
```
### Use model to make predictions
```python
def predict_description(model, tokenizer, text, max_length=512):
model.eval() # Set the model to evaluation mode
# Ensure model is on the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Encode the input text
inputs = tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=max_length,
padding='max_length',
return_token_type_ids=False,
return_tensors='pt',
truncation=True
)
# Move tensors to the correct device
inputs = {key: value.to(device) for key, value in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_class_id = torch.argmax(probabilities, dim=-1).item()
return predicted_class_id
(['INCIDENT', 'REQUEST'])[predict_description(model, tokenizer, """My ID card is not being detected.""")]
```
</details> |