--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased.finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.935 - name: F1 type: f1 value: 0.9351633564924363 --- # distilbert-base-uncased.finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1501 - Accuracy: 0.935 - F1: 0.9352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.3032 | 1.0 | 63 | 0.8573 | 0.7235 | 0.6635 | | 0.5915 | 2.0 | 126 | 0.3309 | 0.901 | 0.8998 | | 0.2647 | 3.0 | 189 | 0.2051 | 0.9305 | 0.9304 | | 0.1727 | 4.0 | 252 | 0.1764 | 0.933 | 0.9327 | | 0.1431 | 5.0 | 315 | 0.1648 | 0.9325 | 0.9328 | | 0.1198 | 6.0 | 378 | 0.1576 | 0.9355 | 0.9354 | | 0.1075 | 7.0 | 441 | 0.1598 | 0.935 | 0.9351 | | 0.0987 | 8.0 | 504 | 0.1528 | 0.9335 | 0.9340 | | 0.0917 | 9.0 | 567 | 0.1513 | 0.9335 | 0.9335 | | 0.0877 | 10.0 | 630 | 0.1501 | 0.935 | 0.9352 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1