Kenemo commited on
Commit
0113467
1 Parent(s): 4267c3d

Push model to the Hub

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalker-v3
16
+ type: BipedalWalker-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 117.54 +/- 61.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **BipedalWalker-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x16df2b9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16df2ba30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16df2bac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16df2bb50>", "_build": "<function ActorCriticPolicy._build at 0x16df2bbe0>", "forward": "<function ActorCriticPolicy.forward at 0x16df2bc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x16df2bd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16df2bd90>", "_predict": "<function ActorCriticPolicy._predict at 0x16df2be20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16df2beb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16df2bf40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x16df34040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16dcd05c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 50, "num_timesteps": 1024000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674579025384059000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNRMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAEgAAAAAAAFY5tz2TEFS9dPa2Pck+rj0yG1O/AKgCOYDn7j4oNwY/AACAPyEegT9g4a68bA5SPwoAgD8AAIA/szCQPkFgkz7Ropo+vTimPkVqtj5GeM0+qyDtPgPrCz8fuDc/AACAP0Rxnr0xfSu8S/PkPcH9Qr39EC2/4P9/P04A9T4BAIC/AAAAAHLUjD8AACAz6qtHP0PHAz8AAIA/UQeOPgGRkT6I6pg+MbGlPtVbuj5Bo9o+t0UBP554JT/vz1g/AACAPwypfz7bjnI8KaO5PFQn+L0zxzu/8/9/PwAmjrvI7sq/AACAPxoalT/zaXM/OEw1PwAAgL8AAAAAhpKHPqsciT4c6Y0+v9+WPn3DpD7FLbg+MZPWPkQRAj/XRik/AACAP/Tl37uPVC08sgGIPWbGFr0ScUu/GBOAv5Id6j7V5X8/AACAP9ihjz8AoAM35iBvP6vaSTgAAIA/1+h/PmtogT7W74U+9BmOPpsImz484K4+GdjNPlOUAD8ImTA/AACAP0ileT7yX7C7BbMPPjOZUb0tKE+/eUpmvgCr7D3Pyl2+AACAPwvbkD8AAAAAfrj0PgEAgL8AAAAAuBeKPgz8iz6ZzZE+6qSbPhbPqT5IF74+jarcPpNyBz/BBjc/AACAP0aYAb5dnQQ9yE2tPW+XHj2ReVm/Jmgxvyq8az/7Ouq+AAAAADpDkT8AAAAA1ARnP6uq6rMAAIA/Bq6aPrhvnD5M6aE+9serPhZquz6qZtM+Xdb4Pg7kGz9rsk4/AACAPw1rHr57ZXm8DO+OPehpVz1nskG/XvGtPjsjZj8AAAAAAAAAAPdXkT8AgDy2GO9vP8AHqjsAAIA/yAOSPkUglD6IFJo+IaulPuaptz6UeNE+yAP1PtZnGD/fJ0w/AACAP9nMBL6h+bS7q//hPIdFmTwRU1G/ACZPOfxVbz8AAAAAAACAPxjqjD8AIEi3pzFrPwD1MToAAIA/sEOPPnDGkD6J15U+aS6gPuhisT5wQ9A+V+7+PqVpHz+ZpFE/AACAPwU0T727Ubo9pGrIPYDd1Tw9SSm/6rqsv3BkJT8tY3I/AACAP8cxjz8AAJC1aNgVP2CDeb8AAIA/CTOfPsaAoT4KUac+LJCxPigoxD4xQeA+PbwEP9zaHz9Yh08/AACAP2D0qT24xi49CI2LPSzBjL3R306/qP+7vuxL4T4BAIA/AAAAAAghkT8AAAAANFIIPzDkUL0AAIA//ViQPrskkj4XQpc+zpmgPlhWrz6UJcU+5MLmPnISED+ktkE/AACAP1sXDD6BK1c9pH6KOzbBdD090xK/+slBPwBmSDz9/3+/AACAPzAdhj/+/3+/0BwRPwMAgD8AAIA/svKOPkmSkD6PoZU+lsCePiszrT4SrMQ+FvLqPm5CDz/X1kQ/AACAP8RdDT5MIaG8hLHVPWAbtD2m1Ce/PKsXvlCF1j19dd4+AAAAAMyLiz/buw6/fmJFPyGRCT8AAAAAsHWMPgsOjj7FBpM+J/2bPlovqj5q978+EPbhPjklDT+YxUM/AACAP8Mjbj06cQO7DstAPeSbKrzq8EO/o94GPpKnnD4/8wW/AAAAAKMBiT+t2M4+JPZmPwAAAAAAAIA/oM6FPqNThz4WEIw+zZmUPuAfoj7W37Y+TULXPth1Bj9Pojg/AACAPzBm3D0XMuY8bYG8PH/DmLt+5lO/LKzfPfKUgj78/3+/AACAP07rjD/i3DC+akhqP6uqKjEAAIA/CTN2PpBbdT6kc3k+Hd+BPpywiz7dGJs+vwi0PoKs4D7VPiA/AACAP0ygHzyWxs66GJ6XPdOsib1bOT+/+f9/P1Zhuj4AAIC/AAAAALfekD8AAKAxouDtPkDTdb8AAAAA1kufPvQaoT5cvqY+b+iwPgECwT7atdk+yiEAP+kSID81fl0/AACAPx4ZDr3EAyS8gcOWPRiGwLyJl8i+/w5DP8DxnLxU+qC/AACAPwKnij8aeGG95lJvP6uqqrEAAAAALH+VPsYhlz5SHZw+nhWlPo6hsT4Ne8Q+JorjPv6vCD8qpSw/AACAPx6l/L14nfy8Y4MTvVbjfr3ACFI//v9/P+AfRr0BAIC/AAAAAKTobD84yaE/IHn3PP//f78AAAAADOLePgdq4T6aTek+W4b3PpMGBz+mThg/YEczP5X4Xz8AAIA/AACAPxUJKD5bsNC8LzkVPmyWdb1POFK/zk+wviBIjL1zdU+/AAAAAO8KgD9lbiU/VpZdPwAAgL8AAAAAn6aHPv8wiT4m/o0++6WWPsJbpD7qZLk+nTnaPiVQCD9FDjs/AACAP0PfyD1Y56k9YDuSPD8H2jwzDi+/nUkUP+AS1z3hlZS/AACAP/TSjT8AAAAACJtCP8APTr8AAIA/Afx6Pswjez7K3oA+C62IPr50lT5E16o+qnfJPkEGAT9Aqzg/AACAP2giGjxaqFO7Bq/CO8nPQTyTJlG/sAW0upzxyj48wT49AACAP5BFkT8Aco04IF5vP+DMODsAAIA/pZlwPiJVcz7qrHs+tWOFPiWHkD6xGKE+XBK/Pn/G+z7q8jU/AACAP0eEuj1hwX49U+fHPBSuCD3PwFW/AACAs+bImD7dUlm/AACAPzBojj8AAAAA6nZPP2JYIL8AAIA/V3Z1PvY/eD4ReIA+20yIPlu0lD6dvKc+1HDFPhip9j5Blys/AACAP168t7vEpKK9KNjYPRL6XTz8vUC/5v9/P6ge8D4BAIC/AAAAAGBFkT8AAAAzjgCVPydZpT8AAIA/G4t5PkmVdz5hons+E+aCPunRjD4yOpw+ay60PhWi3D781Rg/AACAP8+EFz0CzZc79gaFPRj9qTwjXDO/SiY7PSwtBD58KC69AACAPwByjz9gpoO9SldvPwAAsLQAAIA/caJuPjdYcT6Eynk+SYKEPnSRkD4wEqM+4vK/Pk0r8z7V/Cw/AACAPzwDyT2D+mI9GpdVPYlDB7xhtkG/PIikv267tj6X/38/AACAPze9gD+wOAE/1axQP/3/f78AAIA/7yGPPg/CkD4B05U+DPWePmhsrT6TnsM+00LmPs/UDz9wgEU/AACAP0Hjrz6A+xi8w/HcPO54tDxkSD6/mJUePAg7A74PQqo9AAAAALhKkT8AAMK1DLQavyVcHz0AAIA/N6GMPnKBjj6Qf5M+jGycPghkqT6otL4+NrnhPtxLDz86gUY/AACAP8xZ2jxxv8C9U71gPpSsbL2E8VK/AACkNm6NyT7qfg4/AAAAAKdEkT8AAKC06BVoP2P7fz8AAIA/Z1RgPn23ZD5dv24+BiOAPoLmjT7BR6Q+WJvEPoZv/D4tPjc/AACAPzrJAT6hTwQ9uIt2PT8kYDs31FG/AACAMvA9dj7/mSa/AAAAAITIjT8AAAAAj5kBP/X5rL4AAIA/YJ95PqlOfj6eR4U+9KyPPplJoD43rLk+cgLiPibpDz9kmUU/AACAP6KwF71XFM49VkYoPTG3gjxG2Oe+D95/v5R9pD5s9tE+AACAP4wvkD8AAEq3BNgGP0UEgL8AAIA/c0+nPt41qT4vAa8+HFm5PhA6yj4DeuI+yDYCP6HvID/z81Q/AACAP/QLF73x9w29J+eMPYE7QDyA8VS/AAMOOuz06D67m44+AACAP3nxjz8AYMW3AlhuPxcakD4AAIA/uux4PpjkfT72QYQ+3rOMPiGTmj7kGbE+fqDWPkhRBz9UdT8/AACAPzFMDL7dVQG9ZDBLPWNMZD2UHTy/5mXyvoqkej8DAIA/AACAP6VEkT8AAAAAlNBEP1URGj4AAIA/K8SkPjCjpj4peKw+lvu2PrCixz7/Zd8+7wACP2FgHz/ucl4/AACAPxLGC7704Um7CkfJPRGnlj2JvFW/AADAMypyZD8AAAAAAAAAAK1EkT8AAICxzFJ8P/v/fz8AAIA/SA+YPtaGmj7is6A+sH+qPlDOuj73KdU+uOL9PiBTHT/Sbkg/AACAP3hOvz0GTVa9qvjgPYNPVL2EmyO/SAEKPQCwILsfPIA/AACAPy4qlT+or4o/QQkSP23Wf78AAIA/2IN8Pvlhfz4GKYQ+gTmMPhqOmj6SeLA+Gj7TPr7uBT/agT8/AACAP9GogD5XLaI9bY7uPQMZVzylrl+/5UWyv95svj4DAIA/AAAAAEoHjz8AAAAAZyMFP/v/f78AAAAAFveVPhOrlz7v+Zw+3rSlPtrdsj7O5sU+h4DjPjzHCD88cj4/AACAP8X2oDzd+Fo9AM6dPblmDz1+lxW/dLOOveB5jTz9/3+/AAAAACs+ij+Q9Ji+FFZvP6uqKrEAAAAAyhSVPqaDlj6in5k+rqmgPkFkrj54MMU+JvjoPnU0Dz/Zhkc/AACAP7TNrTzW0fe9fw3EPS/c7ryHUD+/AgCAPxjVUz4DrLO+AAAAACHElj/7/38/PvhvP/n/fz8AAIA/3AF7PpIkgD77MIU+NsGNPnQmmT5Ut6s+Y5PKPgZF+T5pjR4/t0x7P9ThXT3IVGe9h4TyPJG2rDxCaEy/2g76Pni6Wj6zoCu/AACAP/4wjz+A/eU+ck5vPwAAAAAAAIA/JSVuPn7ZcD5cR3k+tTyEPoxFkD6RvKI+GY6/PsFO7z72dSk/AACAP3Fd8zyYStc84SbDPO27Lb3t7ji/hQRPPoClP7wAAIC/AAAAAI/kkD8AAAAAQW45Pyh4MD4AAIA/Q/yEPiozhz7HKI0+kJeXPlIjqD5UkL8+Y5vfPpiyBz8QgDc/AACAP0ojXz0pkSU9j4hOvBQ3Orx6vFW/AEDHuEyjqT4FmS+/AACAP75sjj8AgBs3+kliPy9zqb4AAIA/czVzPoX4dT6CQH4+YIeGPg/ikj56yaY+ubjCPh0G+j5LEzM/AACAPw5Diz2B2qw7ZpvKPBwEkDzRyk6/AABeNVDj1D6KJQG/AACAP+zEkz/x/38/lMRCPwsAgL8AAIA/Op+KPj0yjD5YyZA+95uYPnTHpD6b7LY+4/PSPt9V/j736i4/AACAP7wrFD9q9fk8e8YBPbvFyjqn12c+vnWKPqA0G78AgEA7AACAP6KGkD8AwMs3RgtqP9i9xT8AAAAAam61PuJ9tz7c6b0+gn3JPsrT2z5e9vc+xu8RPyZRNj+W0nw/AACAPwkEgb4YCoM8+FosPX26HT2Vaam+FINVP+jPFj/kAYC/AACAP+6FiT+Azy6+uNBtP1U6F7oAAIA/xTq+PgJQwD5RpMU+2aHOPhRe3D7SxvE+/mkMP8MiLj96unI/AACAP2ITOz56EpS9n4QfPmb8Pr2TdUq/NL8XPzwZeD4AAIA/AAAAAGNUjD+MMgw/0DdiP/3/fz8AAAAA7a+OPrT9jz7mzpQ+tl6dPkkMqz57BME+Df/jPpmMFD+3Dk8/AACAP5cMDj2uUGE7Od76PFvSqb0tfEu/tLxEvsl2Cz9vn7e+AACAPyDoij9VoHW9DM9LPwAAgD8AAAAAmp2TPgPDlj4zD5w+zc+lPj22tj7IVs8+p5jzPixoFz8ySEs/AACAP6VKIry2aHG9Y/XoPZ6IhD2UbFW/AJ5EuuhcAz996w0/AAAAAACqjj8AgBs4qb9WPzsxbz8AAIA/Vj6APlFmgz4R04k+2jmSPksQoD7hV7g+mUPgPttKDT9bZEQ/AACAP8jV/D56OeU7ITMkPR2S7DzPKFG/AACIM/RcqL4EAIA/AAAAAC38jj8AAICxKHC5PgEAgL8AAAAAWgmIPtmUiT5+ZY4+oBOXPmLTpD7a67k+ctjaPluzCD/TtTs/AACAP4LgAL1C2QU9HPCIPYx6LD0+g0m/6kqQPtfOVD8LZli/AACAPwLzjT9K2lS+CFdLP///fz8AAIA/9/ibPl69nD5YNaI+4t6sPtzrvT6N/9Y+aK8AP6ovKD/8rH8/AACAP/482z1zbL06RgMBPkO6sr1+Czy/DElaP7r/mD6k4pq/AAAAALncjj8AAICwAGb6PgAAgL8AAAAA46SQPmhJkj4MaJc+yKKgPj9Brz5sr8U+VLHoPqZZET9FW0c/AACAP+gk5T3gytw9gbBrvGm3b70fHD+/gO/XPCqqiD4AAIC/AAAAAPIAkD8AAAAA9u8hPwAAgL8AAAAA+gyQPsWvkT4JyZY+FPqfPjCJrj7P38Q+8rznPv/AED/DxEY/AACAP34Tjz1kPHi9cj/cPSyokTwez1C/AAASuNVRJz85vfM+AACAP5JxjD+4DnQ9qLBRP/P/fz8AAAAAw/KdPnLonz5XzqM+8MurPpbBuD6eIs8+BK/1PhJTGj9Rr2E/AACAP0yFDD4LhiO8/BAUPSxp5byAvFW/APBBt8g1Uj7L/vg7AAAAAGyQjz9aGq69quV5P/z/fz8AAAAA+1RrPsrHbj4PUHc+O+SCPo2Wjj709qA+j8K8PqZ56j65dR4/McB2P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLMksYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+weRDDnITsCUhpRSlIwBbJRNQAaMAXSUR0Bld8kKNQ0odX2UKGgGaAloD0MIITtvY7OdSsCUhpRSlGgVTUAGaBZHQGV6832mHgx1fZQoaAZoCWgPQwjbheY6jUhMwJSGlFKUaBVNQAZoFkdAZX6qur6tT3V9lChoBmgJaA9DCLaeIRyzYk7AlIaUUpRoFU1ABmgWR0BlgLH4oJAudX2UKGgGaAloD0MIKSUEq+r5RcCUhpRSlGgVTUAGaBZHQGWBIaDPGAF1fZQoaAZoCWgPQwi9GTVfJZFFwJSGlFKUaBVNQAZoFkdAZYGUKzAvc3V9lChoBmgJaA9DCKyowTQMl0/AlIaUUpRoFU1ABmgWR0BlhYrpaA4GdX2UKGgGaAloD0MIEM08uaYqXsCUhpRSlGgVS1loFkdAZYlX5FgDzXV9lChoBmgJaA9DCErs2t5u9VvAlIaUUpRoFUswaBZHQGWK8NH6Mzd1fZQoaAZoCWgPQwj2tMNfk/pawJSGlFKUaBVLQ2gWR0Bljd6HCXQddX2UKGgGaAloD0MIxFp8CoAbSsCUhpRSlGgVTUAGaBZHQGXx690zTF51fZQoaAZoCWgPQwiyvKseMHtMwJSGlFKUaBVNQAZoFkdAZfK6cy31BnV9lChoBmgJaA9DCMzPDU3ZWUbAlIaUUpRoFU1ABmgWR0Bl9F1uBMBZdX2UKGgGaAloD0MIV87eGW3rWsCUhpRSlGgVS0toFkdAZfZ1X/5tWXV9lChoBmgJaA9DCEjfpGlQ4kfAlIaUUpRoFU1ABmgWR0Bl9rP8hs68dX2UKGgGaAloD0MIADrMlxc2TsCUhpRSlGgVTUAGaBZHQGYBKYRdyDJ1fZQoaAZoCWgPQwgpCYm0jbJcwJSGlFKUaBVLWWgWR0BmA13t8eCDdX2UKGgGaAloD0MImdNlMbG1RMCUhpRSlGgVTUAGaBZHQGYDx9oexOd1fZQoaAZoCWgPQwghAg6hShlHwJSGlFKUaBVNQAZoFkdAZgVavA44qHV9lChoBmgJaA9DCISB597D8UrAlIaUUpRoFU1ABmgWR0BmBjk2gnMMdX2UKGgGaAloD0MIbCV0l8TNWcCUhpRSlGgVSzVoFkdAZg3JIUahpXV9lChoBmgJaA9DCCUIV0ChOkrAlIaUUpRoFU1ABmgWR0BmERBPbfxddX2UKGgGaAloD0MIRPesa7TMTcCUhpRSlGgVTUAGaBZHQGYTbJnxri51fZQoaAZoCWgPQwh7avXVVadFwJSGlFKUaBVNQAZoFkdAZhQZEUj9oHV9lChoBmgJaA9DCJj6eVORKkTAlIaUUpRoFU1ABmgWR0BmGesRxtHhdX2UKGgGaAloD0MI7tEb7iPJScCUhpRSlGgVTUAGaBZHQGYcrg4wRGt1fZQoaAZoCWgPQwgxmSoYlWhGwJSGlFKUaBVNQAZoFkdAZhztdiUgS3V9lChoBmgJaA9DCD7NyYtMTEjAlIaUUpRoFU1ABmgWR0BmICZH/cWTdX2UKGgGaAloD0MIfoy5awnxSMCUhpRSlGgVTUAGaBZHQGYjXZGrjo91fZQoaAZoCWgPQwjdzr7yID9DwJSGlFKUaBVNQAZoFkdAZiTuAI6bOXV9lChoBmgJaA9DCI+qJoi6MULAlIaUUpRoFU1ABmgWR0BmJi9Gqgh9dX2UKGgGaAloD0MIghspWyTLS8CUhpRSlGgVTUAGaBZHQGYnvI4lyBF1fZQoaAZoCWgPQwgVHF4QkcNawJSGlFKUaBVLLGgWR0BmKOza9K28dX2UKGgGaAloD0MIvjJv1XUOScCUhpRSlGgVTUAGaBZHQGYtdZzPrv91fZQoaAZoCWgPQwjxY8xdS4JbwJSGlFKUaBVLSWgWR0BmMdgtvn8sdX2UKGgGaAloD0MIDJQUWADiXMCUhpRSlGgVS4NoFkdAZjbY8Md92HV9lChoBmgJaA9DCKMeotEd8EfAlIaUUpRoFU1ABmgWR0BmOnnbItDldX2UKGgGaAloD0MIliNkIM/WScCUhpRSlGgVTUAGaBZHQGY+tD+irT91fZQoaAZoCWgPQwi7gJcZNkBLwJSGlFKUaBVNQAZoFkdAZkMjNY8uBnV9lChoBmgJaA9DCAw89x4u+UnAlIaUUpRoFU1ABmgWR0BmQ2wu/UONdX2UKGgGaAloD0MI4IWt2covWsCUhpRSlGgVS0BoFkdAZkb94u9OAXV9lChoBmgJaA9DCJHWGHRCukXAlIaUUpRoFU1ABmgWR0BmSg/Vy3kQdX2UKGgGaAloD0MISx3k9WAaRMCUhpRSlGgVTUAGaBZHQGZNiOearm11fZQoaAZoCWgPQwioqPqVzhpcwJSGlFKUaBVLSmgWR0BmUaYVqN6xdX2UKGgGaAloD0MIUOEIUilKT8CUhpRSlGgVTUAGaBZHQGZW8+qzZ6F1fZQoaAZoCWgPQwgceouH93xawJSGlFKUaBVLPGgWR0BmWUfV7Qb/dX2UKGgGaAloD0MIpmCNs+mrXcCUhpRSlGgVS1FoFkdAZln2C/XXiHV9lChoBmgJaA9DCE87/DVZ3VvAlIaUUpRoFUs9aBZHQGZlzFl05lx1fZQoaAZoCWgPQwgGvqJbr1tEwJSGlFKUaBVNQAZoFkdAZnGuscQyynV9lChoBmgJaA9DCDPd66S+LF3AlIaUUpRoFUtsaBZHQGZ6zeO4oZ11fZQoaAZoCWgPQwiTGtoAbIhHwJSGlFKUaBVNQAZoFkdAZn8RSxZ+yHV9lChoBmgJaA9DCJDcmnRbvEPAlIaUUpRoFU1ABmgWR0BmktOTJQtSdX2UKGgGaAloD0MIWcAEbt0NQsCUhpRSlGgVTUAGaBZHQGaUTT4L1Ep1fZQoaAZoCWgPQwgPYJFfP8RIwJSGlFKUaBVNQAZoFkdAZpaYWtU4rHV9lChoBmgJaA9DCLsnDwu1qkPAlIaUUpRoFU1ABmgWR0Bmnv/kvK2bdX2UKGgGaAloD0MIV+wvuyc/XMCUhpRSlGgVS0xoFkdAZqZQEZBLPHV9lChoBmgJaA9DCFOT4A1ptFvAlIaUUpRoFUtXaBZHQGamVnuiN851fZQoaAZoCWgPQwhL5ljeVQ1GwJSGlFKUaBVNQAZoFkdAZqyY3Ns3ynV9lChoBmgJaA9DCPTdrSzRhT/AlIaUUpRoFU1ABmgWR0BnISCBf8dgdX2UKGgGaAloD0MIxZJy9zmMQcCUhpRSlGgVTUAGaBZHQGcolXA/LTx1fZQoaAZoCWgPQwht4uR+h3hAwJSGlFKUaBVNQAZoFkdAZzgka/ATI3V9lChoBmgJaA9DCMS12sNebETAlIaUUpRoFU1ABmgWR0BnRFiMHbAUdX2UKGgGaAloD0MIhlYnZygSR8CUhpRSlGgVTUAGaBZHQGdLRPfsNUh1fZQoaAZoCWgPQwjyBpj5DjJAwJSGlFKUaBVNQAZoFkdAZ1gfL9uP3nV9lChoBmgJaA9DCAtFup9TrEPAlIaUUpRoFU1ABmgWR0BnZ6Rhc7hfdX2UKGgGaAloD0MIukxNgje8RcCUhpRSlGgVTUAGaBZHQGdqLv9cbBJ1fZQoaAZoCWgPQwga4e1BCLpDwJSGlFKUaBVNQAZoFkdAZ2tiYsunM3V9lChoBmgJaA9DCM138BMHPFDAlIaUUpRoFU1ABmgWR0BndMhvBJqZdX2UKGgGaAloD0MIwygIHt+wW8CUhpRSlGgVS0doFkdAZ3gntOVPe3V9lChoBmgJaA9DCOgzoN6MkkDAlIaUUpRoFU1ABmgWR0BneJCBwuM/dX2UKGgGaAloD0MIV5i+1xASQcCUhpRSlGgVTUAGaBZHQGd7EG7jDKp1fZQoaAZoCWgPQwjfGtgqwepHwJSGlFKUaBVNQAZoFkdAZ3942S+xnnV9lChoBmgJaA9DCPkupS4Zqz/AlIaUUpRoFU1ABmgWR0Bng23QUpNLdX2UKGgGaAloD0MIN4jWijYxSMCUhpRSlGgVTUAGaBZHQGeIAXdj5Kx1fZQoaAZoCWgPQwjBHhMpzeBFwJSGlFKUaBVNQAZoFkdAZ5BAQg9vCXV9lChoBmgJaA9DCP+Xa9EC5lvAlIaUUpRoFUswaBZHQGeRxT850bN1fZQoaAZoCWgPQwgCZVOu8KRLwJSGlFKUaBVNQAZoFkdAZ5IYsNDtxHV9lChoBmgJaA9DCJs8ZTVdF0DAlIaUUpRoFU1ABmgWR0BnlGEwnH/+dX2UKGgGaAloD0MIfa1LjdCtRsCUhpRSlGgVTUAGaBZHQGeUo4dZJTV1fZQoaAZoCWgPQwgjhh3GpP8+wJSGlFKUaBVNQAZoFkdAZ5+keIVM23V9lChoBmgJaA9DCCHp0yr6XUTAlIaUUpRoFU1ABmgWR0BnokDEFW4mdX2UKGgGaAloD0MImWN5Vz3sQsCUhpRSlGgVTUAGaBZHQGej40dilSF1fZQoaAZoCWgPQwjJHMu76tNIwJSGlFKUaBVNQAZoFkdAZ6TDjR2KVXV9lChoBmgJaA9DCKKZJ9cUOkTAlIaUUpRoFU1ABmgWR0BnrIqLCN0edX2UKGgGaAloD0MIkq8EUmJRQcCUhpRSlGgVTUAGaBZHQGev5+YtxuN1fZQoaAZoCWgPQwiiKqbST6hGwJSGlFKUaBVNQAZoFkdAZ7JUYsNDt3V9lChoBmgJaA9DCFCm0eRiSVvAlIaUUpRoFUtIaBZHQGeyXiJfpll1fZQoaAZoCWgPQwijlXuBWU1DwJSGlFKUaBVNQAZoFkdAZ7MQeV9nb3V9lChoBmgJaA9DCKZCPBIvKUbAlIaUUpRoFU1ABmgWR0BnuPsu3+dcdX2UKGgGaAloD0MIQEtXsI2IPMCUhpRSlGgVTUAGaBZHQGe7wPqcEvF1fZQoaAZoCWgPQwjH1F3ZBaVZwJSGlFKUaBVLNmgWR0BnvdLteD3/dX2UKGgGaAloD0MIs89jlGfkQ8CUhpRSlGgVTUAGaBZHQGfD+FL39Jl1fZQoaAZoCWgPQwiZucDlsTBDwJSGlFKUaBVNQAZoFkdAZ8UzguRLb3V9lChoBmgJaA9DCHfX2ZB/WEXAlIaUUpRoFU1ABmgWR0BnxtCeEqUedX2UKGgGaAloD0MIsDcxJCcFQMCUhpRSlGgVTUAGaBZHQGfIApazNUx1fZQoaAZoCWgPQwiqSfCGNK49wJSGlFKUaBVNQAZoFkdAZ8yLyc0+DHV9lChoBmgJaA9DCOT1YFJ87DnAlIaUUpRoFU1ABmgWR0Bn0O7tiQT3dX2UKGgGaAloD0MIPPn02JZVRcCUhpRSlGgVTUAGaBZHQGfWCFj/dZd1fZQoaAZoCWgPQwhMxFvn3yY7wJSGlFKUaBVNQAZoFkdAZ934HHFPznV9lChoBmgJaA9DCG8MAcCx5UDAlIaUUpRoFU1ABmgWR0Bn4vMSsbNsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baac2603bdfc664eb93e61f6779a1e8c761246ab9eb92e867bd464f7e17d572b
3
+ size 179444
ppo-BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-BipedalWalker-v3/data ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x16df2b9a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16df2ba30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16df2bac0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16df2bb50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x16df2bbe0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x16df2bc70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x16df2bd00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16df2bd90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x16df2be20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16df2beb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16df2bf40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x16df34040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x16dcd05c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 24
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 4
43
+ ],
44
+ "low": "[-1. -1. -1. -1.]",
45
+ "high": "[1. 1. 1. 1.]",
46
+ "bounded_below": "[ True True True True]",
47
+ "bounded_above": "[ True True True True]",
48
+ "_np_random": null
49
+ },
50
+ "n_envs": 50,
51
+ "num_timesteps": 1024000,
52
+ "_total_timesteps": 1000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": null,
55
+ "action_noise": null,
56
+ "start_time": 1674579025384059000,
57
+ "learning_rate": 0.0003,
58
+ "tensorboard_log": null,
59
+ "lr_schedule": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
62
+ },
63
+ "_last_obs": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVNRMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAEgAAAAAAAFY5tz2TEFS9dPa2Pck+rj0yG1O/AKgCOYDn7j4oNwY/AACAPyEegT9g4a68bA5SPwoAgD8AAIA/szCQPkFgkz7Ropo+vTimPkVqtj5GeM0+qyDtPgPrCz8fuDc/AACAP0Rxnr0xfSu8S/PkPcH9Qr39EC2/4P9/P04A9T4BAIC/AAAAAHLUjD8AACAz6qtHP0PHAz8AAIA/UQeOPgGRkT6I6pg+MbGlPtVbuj5Bo9o+t0UBP554JT/vz1g/AACAPwypfz7bjnI8KaO5PFQn+L0zxzu/8/9/PwAmjrvI7sq/AACAPxoalT/zaXM/OEw1PwAAgL8AAAAAhpKHPqsciT4c6Y0+v9+WPn3DpD7FLbg+MZPWPkQRAj/XRik/AACAP/Tl37uPVC08sgGIPWbGFr0ScUu/GBOAv5Id6j7V5X8/AACAP9ihjz8AoAM35iBvP6vaSTgAAIA/1+h/PmtogT7W74U+9BmOPpsImz484K4+GdjNPlOUAD8ImTA/AACAP0ileT7yX7C7BbMPPjOZUb0tKE+/eUpmvgCr7D3Pyl2+AACAPwvbkD8AAAAAfrj0PgEAgL8AAAAAuBeKPgz8iz6ZzZE+6qSbPhbPqT5IF74+jarcPpNyBz/BBjc/AACAP0aYAb5dnQQ9yE2tPW+XHj2ReVm/Jmgxvyq8az/7Ouq+AAAAADpDkT8AAAAA1ARnP6uq6rMAAIA/Bq6aPrhvnD5M6aE+9serPhZquz6qZtM+Xdb4Pg7kGz9rsk4/AACAPw1rHr57ZXm8DO+OPehpVz1nskG/XvGtPjsjZj8AAAAAAAAAAPdXkT8AgDy2GO9vP8AHqjsAAIA/yAOSPkUglD6IFJo+IaulPuaptz6UeNE+yAP1PtZnGD/fJ0w/AACAP9nMBL6h+bS7q//hPIdFmTwRU1G/ACZPOfxVbz8AAAAAAACAPxjqjD8AIEi3pzFrPwD1MToAAIA/sEOPPnDGkD6J15U+aS6gPuhisT5wQ9A+V+7+PqVpHz+ZpFE/AACAPwU0T727Ubo9pGrIPYDd1Tw9SSm/6rqsv3BkJT8tY3I/AACAP8cxjz8AAJC1aNgVP2CDeb8AAIA/CTOfPsaAoT4KUac+LJCxPigoxD4xQeA+PbwEP9zaHz9Yh08/AACAP2D0qT24xi49CI2LPSzBjL3R306/qP+7vuxL4T4BAIA/AAAAAAghkT8AAAAANFIIPzDkUL0AAIA//ViQPrskkj4XQpc+zpmgPlhWrz6UJcU+5MLmPnISED+ktkE/AACAP1sXDD6BK1c9pH6KOzbBdD090xK/+slBPwBmSDz9/3+/AACAPzAdhj/+/3+/0BwRPwMAgD8AAIA/svKOPkmSkD6PoZU+lsCePiszrT4SrMQ+FvLqPm5CDz/X1kQ/AACAP8RdDT5MIaG8hLHVPWAbtD2m1Ce/PKsXvlCF1j19dd4+AAAAAMyLiz/buw6/fmJFPyGRCT8AAAAAsHWMPgsOjj7FBpM+J/2bPlovqj5q978+EPbhPjklDT+YxUM/AACAP8Mjbj06cQO7DstAPeSbKrzq8EO/o94GPpKnnD4/8wW/AAAAAKMBiT+t2M4+JPZmPwAAAAAAAIA/oM6FPqNThz4WEIw+zZmUPuAfoj7W37Y+TULXPth1Bj9Pojg/AACAPzBm3D0XMuY8bYG8PH/DmLt+5lO/LKzfPfKUgj78/3+/AACAP07rjD/i3DC+akhqP6uqKjEAAIA/CTN2PpBbdT6kc3k+Hd+BPpywiz7dGJs+vwi0PoKs4D7VPiA/AACAP0ygHzyWxs66GJ6XPdOsib1bOT+/+f9/P1Zhuj4AAIC/AAAAALfekD8AAKAxouDtPkDTdb8AAAAA1kufPvQaoT5cvqY+b+iwPgECwT7atdk+yiEAP+kSID81fl0/AACAPx4ZDr3EAyS8gcOWPRiGwLyJl8i+/w5DP8DxnLxU+qC/AACAPwKnij8aeGG95lJvP6uqqrEAAAAALH+VPsYhlz5SHZw+nhWlPo6hsT4Ne8Q+JorjPv6vCD8qpSw/AACAPx6l/L14nfy8Y4MTvVbjfr3ACFI//v9/P+AfRr0BAIC/AAAAAKTobD84yaE/IHn3PP//f78AAAAADOLePgdq4T6aTek+W4b3PpMGBz+mThg/YEczP5X4Xz8AAIA/AACAPxUJKD5bsNC8LzkVPmyWdb1POFK/zk+wviBIjL1zdU+/AAAAAO8KgD9lbiU/VpZdPwAAgL8AAAAAn6aHPv8wiT4m/o0++6WWPsJbpD7qZLk+nTnaPiVQCD9FDjs/AACAP0PfyD1Y56k9YDuSPD8H2jwzDi+/nUkUP+AS1z3hlZS/AACAP/TSjT8AAAAACJtCP8APTr8AAIA/Afx6Pswjez7K3oA+C62IPr50lT5E16o+qnfJPkEGAT9Aqzg/AACAP2giGjxaqFO7Bq/CO8nPQTyTJlG/sAW0upzxyj48wT49AACAP5BFkT8Aco04IF5vP+DMODsAAIA/pZlwPiJVcz7qrHs+tWOFPiWHkD6xGKE+XBK/Pn/G+z7q8jU/AACAP0eEuj1hwX49U+fHPBSuCD3PwFW/AACAs+bImD7dUlm/AACAPzBojj8AAAAA6nZPP2JYIL8AAIA/V3Z1PvY/eD4ReIA+20yIPlu0lD6dvKc+1HDFPhip9j5Blys/AACAP168t7vEpKK9KNjYPRL6XTz8vUC/5v9/P6ge8D4BAIC/AAAAAGBFkT8AAAAzjgCVPydZpT8AAIA/G4t5PkmVdz5hons+E+aCPunRjD4yOpw+ay60PhWi3D781Rg/AACAP8+EFz0CzZc79gaFPRj9qTwjXDO/SiY7PSwtBD58KC69AACAPwByjz9gpoO9SldvPwAAsLQAAIA/caJuPjdYcT6Eynk+SYKEPnSRkD4wEqM+4vK/Pk0r8z7V/Cw/AACAPzwDyT2D+mI9GpdVPYlDB7xhtkG/PIikv267tj6X/38/AACAPze9gD+wOAE/1axQP/3/f78AAIA/7yGPPg/CkD4B05U+DPWePmhsrT6TnsM+00LmPs/UDz9wgEU/AACAP0Hjrz6A+xi8w/HcPO54tDxkSD6/mJUePAg7A74PQqo9AAAAALhKkT8AAMK1DLQavyVcHz0AAIA/N6GMPnKBjj6Qf5M+jGycPghkqT6otL4+NrnhPtxLDz86gUY/AACAP8xZ2jxxv8C9U71gPpSsbL2E8VK/AACkNm6NyT7qfg4/AAAAAKdEkT8AAKC06BVoP2P7fz8AAIA/Z1RgPn23ZD5dv24+BiOAPoLmjT7BR6Q+WJvEPoZv/D4tPjc/AACAPzrJAT6hTwQ9uIt2PT8kYDs31FG/AACAMvA9dj7/mSa/AAAAAITIjT8AAAAAj5kBP/X5rL4AAIA/YJ95PqlOfj6eR4U+9KyPPplJoD43rLk+cgLiPibpDz9kmUU/AACAP6KwF71XFM49VkYoPTG3gjxG2Oe+D95/v5R9pD5s9tE+AACAP4wvkD8AAEq3BNgGP0UEgL8AAIA/c0+nPt41qT4vAa8+HFm5PhA6yj4DeuI+yDYCP6HvID/z81Q/AACAP/QLF73x9w29J+eMPYE7QDyA8VS/AAMOOuz06D67m44+AACAP3nxjz8AYMW3AlhuPxcakD4AAIA/uux4PpjkfT72QYQ+3rOMPiGTmj7kGbE+fqDWPkhRBz9UdT8/AACAPzFMDL7dVQG9ZDBLPWNMZD2UHTy/5mXyvoqkej8DAIA/AACAP6VEkT8AAAAAlNBEP1URGj4AAIA/K8SkPjCjpj4peKw+lvu2PrCixz7/Zd8+7wACP2FgHz/ucl4/AACAPxLGC7704Um7CkfJPRGnlj2JvFW/AADAMypyZD8AAAAAAAAAAK1EkT8AAICxzFJ8P/v/fz8AAIA/SA+YPtaGmj7is6A+sH+qPlDOuj73KdU+uOL9PiBTHT/Sbkg/AACAP3hOvz0GTVa9qvjgPYNPVL2EmyO/SAEKPQCwILsfPIA/AACAPy4qlT+or4o/QQkSP23Wf78AAIA/2IN8Pvlhfz4GKYQ+gTmMPhqOmj6SeLA+Gj7TPr7uBT/agT8/AACAP9GogD5XLaI9bY7uPQMZVzylrl+/5UWyv95svj4DAIA/AAAAAEoHjz8AAAAAZyMFP/v/f78AAAAAFveVPhOrlz7v+Zw+3rSlPtrdsj7O5sU+h4DjPjzHCD88cj4/AACAP8X2oDzd+Fo9AM6dPblmDz1+lxW/dLOOveB5jTz9/3+/AAAAACs+ij+Q9Ji+FFZvP6uqKrEAAAAAyhSVPqaDlj6in5k+rqmgPkFkrj54MMU+JvjoPnU0Dz/Zhkc/AACAP7TNrTzW0fe9fw3EPS/c7ryHUD+/AgCAPxjVUz4DrLO+AAAAACHElj/7/38/PvhvP/n/fz8AAIA/3AF7PpIkgD77MIU+NsGNPnQmmT5Ut6s+Y5PKPgZF+T5pjR4/t0x7P9ThXT3IVGe9h4TyPJG2rDxCaEy/2g76Pni6Wj6zoCu/AACAP/4wjz+A/eU+ck5vPwAAAAAAAIA/JSVuPn7ZcD5cR3k+tTyEPoxFkD6RvKI+GY6/PsFO7z72dSk/AACAP3Fd8zyYStc84SbDPO27Lb3t7ji/hQRPPoClP7wAAIC/AAAAAI/kkD8AAAAAQW45Pyh4MD4AAIA/Q/yEPiozhz7HKI0+kJeXPlIjqD5UkL8+Y5vfPpiyBz8QgDc/AACAP0ojXz0pkSU9j4hOvBQ3Orx6vFW/AEDHuEyjqT4FmS+/AACAP75sjj8AgBs3+kliPy9zqb4AAIA/czVzPoX4dT6CQH4+YIeGPg/ikj56yaY+ubjCPh0G+j5LEzM/AACAPw5Diz2B2qw7ZpvKPBwEkDzRyk6/AABeNVDj1D6KJQG/AACAP+zEkz/x/38/lMRCPwsAgL8AAIA/Op+KPj0yjD5YyZA+95uYPnTHpD6b7LY+4/PSPt9V/j736i4/AACAP7wrFD9q9fk8e8YBPbvFyjqn12c+vnWKPqA0G78AgEA7AACAP6KGkD8AwMs3RgtqP9i9xT8AAAAAam61PuJ9tz7c6b0+gn3JPsrT2z5e9vc+xu8RPyZRNj+W0nw/AACAPwkEgb4YCoM8+FosPX26HT2Vaam+FINVP+jPFj/kAYC/AACAP+6FiT+Azy6+uNBtP1U6F7oAAIA/xTq+PgJQwD5RpMU+2aHOPhRe3D7SxvE+/mkMP8MiLj96unI/AACAP2ITOz56EpS9n4QfPmb8Pr2TdUq/NL8XPzwZeD4AAIA/AAAAAGNUjD+MMgw/0DdiP/3/fz8AAAAA7a+OPrT9jz7mzpQ+tl6dPkkMqz57BME+Df/jPpmMFD+3Dk8/AACAP5cMDj2uUGE7Od76PFvSqb0tfEu/tLxEvsl2Cz9vn7e+AACAPyDoij9VoHW9DM9LPwAAgD8AAAAAmp2TPgPDlj4zD5w+zc+lPj22tj7IVs8+p5jzPixoFz8ySEs/AACAP6VKIry2aHG9Y/XoPZ6IhD2UbFW/AJ5EuuhcAz996w0/AAAAAACqjj8AgBs4qb9WPzsxbz8AAIA/Vj6APlFmgz4R04k+2jmSPksQoD7hV7g+mUPgPttKDT9bZEQ/AACAP8jV/D56OeU7ITMkPR2S7DzPKFG/AACIM/RcqL4EAIA/AAAAAC38jj8AAICxKHC5PgEAgL8AAAAAWgmIPtmUiT5+ZY4+oBOXPmLTpD7a67k+ctjaPluzCD/TtTs/AACAP4LgAL1C2QU9HPCIPYx6LD0+g0m/6kqQPtfOVD8LZli/AACAPwLzjT9K2lS+CFdLP///fz8AAIA/9/ibPl69nD5YNaI+4t6sPtzrvT6N/9Y+aK8AP6ovKD/8rH8/AACAP/482z1zbL06RgMBPkO6sr1+Czy/DElaP7r/mD6k4pq/AAAAALncjj8AAICwAGb6PgAAgL8AAAAA46SQPmhJkj4MaJc+yKKgPj9Brz5sr8U+VLHoPqZZET9FW0c/AACAP+gk5T3gytw9gbBrvGm3b70fHD+/gO/XPCqqiD4AAIC/AAAAAPIAkD8AAAAA9u8hPwAAgL8AAAAA+gyQPsWvkT4JyZY+FPqfPjCJrj7P38Q+8rznPv/AED/DxEY/AACAP34Tjz1kPHi9cj/cPSyokTwez1C/AAASuNVRJz85vfM+AACAP5JxjD+4DnQ9qLBRP/P/fz8AAAAAw/KdPnLonz5XzqM+8MurPpbBuD6eIs8+BK/1PhJTGj9Rr2E/AACAP0yFDD4LhiO8/BAUPSxp5byAvFW/APBBt8g1Uj7L/vg7AAAAAGyQjz9aGq69quV5P/z/fz8AAAAA+1RrPsrHbj4PUHc+O+SCPo2Wjj709qA+j8K8PqZ56j65dR4/McB2P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLMksYhpSMAUOUdJRSlC4="
66
+ },
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="
70
+ },
71
+ "_last_original_obs": null,
72
+ "_episode_num": 0,
73
+ "use_sde": false,
74
+ "sde_sample_freq": -1,
75
+ "_current_progress_remaining": -0.02400000000000002,
76
+ "ep_info_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+weRDDnITsCUhpRSlIwBbJRNQAaMAXSUR0Bld8kKNQ0odX2UKGgGaAloD0MIITtvY7OdSsCUhpRSlGgVTUAGaBZHQGV6832mHgx1fZQoaAZoCWgPQwjbheY6jUhMwJSGlFKUaBVNQAZoFkdAZX6qur6tT3V9lChoBmgJaA9DCLaeIRyzYk7AlIaUUpRoFU1ABmgWR0BlgLH4oJAudX2UKGgGaAloD0MIKSUEq+r5RcCUhpRSlGgVTUAGaBZHQGWBIaDPGAF1fZQoaAZoCWgPQwi9GTVfJZFFwJSGlFKUaBVNQAZoFkdAZYGUKzAvc3V9lChoBmgJaA9DCKyowTQMl0/AlIaUUpRoFU1ABmgWR0BlhYrpaA4GdX2UKGgGaAloD0MIEM08uaYqXsCUhpRSlGgVS1loFkdAZYlX5FgDzXV9lChoBmgJaA9DCErs2t5u9VvAlIaUUpRoFUswaBZHQGWK8NH6Mzd1fZQoaAZoCWgPQwj2tMNfk/pawJSGlFKUaBVLQ2gWR0Bljd6HCXQddX2UKGgGaAloD0MIxFp8CoAbSsCUhpRSlGgVTUAGaBZHQGXx690zTF51fZQoaAZoCWgPQwiyvKseMHtMwJSGlFKUaBVNQAZoFkdAZfK6cy31BnV9lChoBmgJaA9DCMzPDU3ZWUbAlIaUUpRoFU1ABmgWR0Bl9F1uBMBZdX2UKGgGaAloD0MIV87eGW3rWsCUhpRSlGgVS0toFkdAZfZ1X/5tWXV9lChoBmgJaA9DCEjfpGlQ4kfAlIaUUpRoFU1ABmgWR0Bl9rP8hs68dX2UKGgGaAloD0MIADrMlxc2TsCUhpRSlGgVTUAGaBZHQGYBKYRdyDJ1fZQoaAZoCWgPQwgpCYm0jbJcwJSGlFKUaBVLWWgWR0BmA13t8eCDdX2UKGgGaAloD0MImdNlMbG1RMCUhpRSlGgVTUAGaBZHQGYDx9oexOd1fZQoaAZoCWgPQwghAg6hShlHwJSGlFKUaBVNQAZoFkdAZgVavA44qHV9lChoBmgJaA9DCISB597D8UrAlIaUUpRoFU1ABmgWR0BmBjk2gnMMdX2UKGgGaAloD0MIbCV0l8TNWcCUhpRSlGgVSzVoFkdAZg3JIUahpXV9lChoBmgJaA9DCCUIV0ChOkrAlIaUUpRoFU1ABmgWR0BmERBPbfxddX2UKGgGaAloD0MIRPesa7TMTcCUhpRSlGgVTUAGaBZHQGYTbJnxri51fZQoaAZoCWgPQwh7avXVVadFwJSGlFKUaBVNQAZoFkdAZhQZEUj9oHV9lChoBmgJaA9DCJj6eVORKkTAlIaUUpRoFU1ABmgWR0BmGesRxtHhdX2UKGgGaAloD0MI7tEb7iPJScCUhpRSlGgVTUAGaBZHQGYcrg4wRGt1fZQoaAZoCWgPQwgxmSoYlWhGwJSGlFKUaBVNQAZoFkdAZhztdiUgS3V9lChoBmgJaA9DCD7NyYtMTEjAlIaUUpRoFU1ABmgWR0BmICZH/cWTdX2UKGgGaAloD0MIfoy5awnxSMCUhpRSlGgVTUAGaBZHQGYjXZGrjo91fZQoaAZoCWgPQwjdzr7yID9DwJSGlFKUaBVNQAZoFkdAZiTuAI6bOXV9lChoBmgJaA9DCI+qJoi6MULAlIaUUpRoFU1ABmgWR0BmJi9Gqgh9dX2UKGgGaAloD0MIghspWyTLS8CUhpRSlGgVTUAGaBZHQGYnvI4lyBF1fZQoaAZoCWgPQwgVHF4QkcNawJSGlFKUaBVLLGgWR0BmKOza9K28dX2UKGgGaAloD0MIvjJv1XUOScCUhpRSlGgVTUAGaBZHQGYtdZzPrv91fZQoaAZoCWgPQwjxY8xdS4JbwJSGlFKUaBVLSWgWR0BmMdgtvn8sdX2UKGgGaAloD0MIDJQUWADiXMCUhpRSlGgVS4NoFkdAZjbY8Md92HV9lChoBmgJaA9DCKMeotEd8EfAlIaUUpRoFU1ABmgWR0BmOnnbItDldX2UKGgGaAloD0MIliNkIM/WScCUhpRSlGgVTUAGaBZHQGY+tD+irT91fZQoaAZoCWgPQwi7gJcZNkBLwJSGlFKUaBVNQAZoFkdAZkMjNY8uBnV9lChoBmgJaA9DCAw89x4u+UnAlIaUUpRoFU1ABmgWR0BmQ2wu/UONdX2UKGgGaAloD0MI4IWt2covWsCUhpRSlGgVS0BoFkdAZkb94u9OAXV9lChoBmgJaA9DCJHWGHRCukXAlIaUUpRoFU1ABmgWR0BmSg/Vy3kQdX2UKGgGaAloD0MISx3k9WAaRMCUhpRSlGgVTUAGaBZHQGZNiOearm11fZQoaAZoCWgPQwioqPqVzhpcwJSGlFKUaBVLSmgWR0BmUaYVqN6xdX2UKGgGaAloD0MIUOEIUilKT8CUhpRSlGgVTUAGaBZHQGZW8+qzZ6F1fZQoaAZoCWgPQwgceouH93xawJSGlFKUaBVLPGgWR0BmWUfV7Qb/dX2UKGgGaAloD0MIpmCNs+mrXcCUhpRSlGgVS1FoFkdAZln2C/XXiHV9lChoBmgJaA9DCE87/DVZ3VvAlIaUUpRoFUs9aBZHQGZlzFl05lx1fZQoaAZoCWgPQwgGvqJbr1tEwJSGlFKUaBVNQAZoFkdAZnGuscQyynV9lChoBmgJaA9DCDPd66S+LF3AlIaUUpRoFUtsaBZHQGZ6zeO4oZ11fZQoaAZoCWgPQwiTGtoAbIhHwJSGlFKUaBVNQAZoFkdAZn8RSxZ+yHV9lChoBmgJaA9DCJDcmnRbvEPAlIaUUpRoFU1ABmgWR0BmktOTJQtSdX2UKGgGaAloD0MIWcAEbt0NQsCUhpRSlGgVTUAGaBZHQGaUTT4L1Ep1fZQoaAZoCWgPQwgPYJFfP8RIwJSGlFKUaBVNQAZoFkdAZpaYWtU4rHV9lChoBmgJaA9DCLsnDwu1qkPAlIaUUpRoFU1ABmgWR0Bmnv/kvK2bdX2UKGgGaAloD0MIV+wvuyc/XMCUhpRSlGgVS0xoFkdAZqZQEZBLPHV9lChoBmgJaA9DCFOT4A1ptFvAlIaUUpRoFUtXaBZHQGamVnuiN851fZQoaAZoCWgPQwhL5ljeVQ1GwJSGlFKUaBVNQAZoFkdAZqyY3Ns3ynV9lChoBmgJaA9DCPTdrSzRhT/AlIaUUpRoFU1ABmgWR0BnISCBf8dgdX2UKGgGaAloD0MIxZJy9zmMQcCUhpRSlGgVTUAGaBZHQGcolXA/LTx1fZQoaAZoCWgPQwht4uR+h3hAwJSGlFKUaBVNQAZoFkdAZzgka/ATI3V9lChoBmgJaA9DCMS12sNebETAlIaUUpRoFU1ABmgWR0BnRFiMHbAUdX2UKGgGaAloD0MIhlYnZygSR8CUhpRSlGgVTUAGaBZHQGdLRPfsNUh1fZQoaAZoCWgPQwjyBpj5DjJAwJSGlFKUaBVNQAZoFkdAZ1gfL9uP3nV9lChoBmgJaA9DCAtFup9TrEPAlIaUUpRoFU1ABmgWR0BnZ6Rhc7hfdX2UKGgGaAloD0MIukxNgje8RcCUhpRSlGgVTUAGaBZHQGdqLv9cbBJ1fZQoaAZoCWgPQwga4e1BCLpDwJSGlFKUaBVNQAZoFkdAZ2tiYsunM3V9lChoBmgJaA9DCM138BMHPFDAlIaUUpRoFU1ABmgWR0BndMhvBJqZdX2UKGgGaAloD0MIwygIHt+wW8CUhpRSlGgVS0doFkdAZ3gntOVPe3V9lChoBmgJaA9DCOgzoN6MkkDAlIaUUpRoFU1ABmgWR0BneJCBwuM/dX2UKGgGaAloD0MIV5i+1xASQcCUhpRSlGgVTUAGaBZHQGd7EG7jDKp1fZQoaAZoCWgPQwjfGtgqwepHwJSGlFKUaBVNQAZoFkdAZ3942S+xnnV9lChoBmgJaA9DCPkupS4Zqz/AlIaUUpRoFU1ABmgWR0Bng23QUpNLdX2UKGgGaAloD0MIN4jWijYxSMCUhpRSlGgVTUAGaBZHQGeIAXdj5Kx1fZQoaAZoCWgPQwjBHhMpzeBFwJSGlFKUaBVNQAZoFkdAZ5BAQg9vCXV9lChoBmgJaA9DCP+Xa9EC5lvAlIaUUpRoFUswaBZHQGeRxT850bN1fZQoaAZoCWgPQwgCZVOu8KRLwJSGlFKUaBVNQAZoFkdAZ5IYsNDtxHV9lChoBmgJaA9DCJs8ZTVdF0DAlIaUUpRoFU1ABmgWR0BnlGEwnH/+dX2UKGgGaAloD0MIfa1LjdCtRsCUhpRSlGgVTUAGaBZHQGeUo4dZJTV1fZQoaAZoCWgPQwgjhh3GpP8+wJSGlFKUaBVNQAZoFkdAZ5+keIVM23V9lChoBmgJaA9DCCHp0yr6XUTAlIaUUpRoFU1ABmgWR0BnokDEFW4mdX2UKGgGaAloD0MImWN5Vz3sQsCUhpRSlGgVTUAGaBZHQGej40dilSF1fZQoaAZoCWgPQwjJHMu76tNIwJSGlFKUaBVNQAZoFkdAZ6TDjR2KVXV9lChoBmgJaA9DCKKZJ9cUOkTAlIaUUpRoFU1ABmgWR0BnrIqLCN0edX2UKGgGaAloD0MIkq8EUmJRQcCUhpRSlGgVTUAGaBZHQGev5+YtxuN1fZQoaAZoCWgPQwiiKqbST6hGwJSGlFKUaBVNQAZoFkdAZ7JUYsNDt3V9lChoBmgJaA9DCFCm0eRiSVvAlIaUUpRoFUtIaBZHQGeyXiJfpll1fZQoaAZoCWgPQwijlXuBWU1DwJSGlFKUaBVNQAZoFkdAZ7MQeV9nb3V9lChoBmgJaA9DCKZCPBIvKUbAlIaUUpRoFU1ABmgWR0BnuPsu3+dcdX2UKGgGaAloD0MIQEtXsI2IPMCUhpRSlGgVTUAGaBZHQGe7wPqcEvF1fZQoaAZoCWgPQwjH1F3ZBaVZwJSGlFKUaBVLNmgWR0BnvdLteD3/dX2UKGgGaAloD0MIs89jlGfkQ8CUhpRSlGgVTUAGaBZHQGfD+FL39Jl1fZQoaAZoCWgPQwiZucDlsTBDwJSGlFKUaBVNQAZoFkdAZ8UzguRLb3V9lChoBmgJaA9DCHfX2ZB/WEXAlIaUUpRoFU1ABmgWR0BnxtCeEqUedX2UKGgGaAloD0MIsDcxJCcFQMCUhpRSlGgVTUAGaBZHQGfIApazNUx1fZQoaAZoCWgPQwiqSfCGNK49wJSGlFKUaBVNQAZoFkdAZ8yLyc0+DHV9lChoBmgJaA9DCOT1YFJ87DnAlIaUUpRoFU1ABmgWR0Bn0O7tiQT3dX2UKGgGaAloD0MIPPn02JZVRcCUhpRSlGgVTUAGaBZHQGfWCFj/dZd1fZQoaAZoCWgPQwhMxFvn3yY7wJSGlFKUaBVNQAZoFkdAZ934HHFPznV9lChoBmgJaA9DCG8MAcCx5UDAlIaUUpRoFU1ABmgWR0Bn4vMSsbNsdWUu"
79
+ },
80
+ "ep_success_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
83
+ },
84
+ "_n_updates": 80,
85
+ "n_steps": 1024,
86
+ "gamma": 0.99,
87
+ "gae_lambda": 0.98,
88
+ "ent_coef": 0.01,
89
+ "vf_coef": 0.5,
90
+ "max_grad_norm": 0.5,
91
+ "batch_size": 64,
92
+ "n_epochs": 4,
93
+ "clip_range": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
96
+ },
97
+ "clip_range_vf": null,
98
+ "normalize_advantage": true,
99
+ "target_kl": null
100
+ }
ppo-BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80fab9f69bad251d00a691b53a897dc992acecdf6194de3c8390fdf5dbc084c4
3
+ size 104688
ppo-BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:366008d1b1f9aece81d61032eb94d44961c8a3727141ed321e09c7a9c6ccd1f1
3
+ size 51774
ppo-BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112
2
+ - Python: 3.10.8
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (856 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 117.54173311153541, "std_reward": 61.72014201508115, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T17:55:06.216958"}