Kenemo commited on
Commit
6b52bd2
1 Parent(s): aea775c

more training steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: BipedalWalker-v3
17
  metrics:
18
  - type: mean_reward
19
- value: 239.93 +/- 114.24
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: BipedalWalker-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: 200.13 +/- 145.83
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x16df2b9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16df2ba30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16df2bac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16df2bb50>", "_build": "<function ActorCriticPolicy._build at 0x16df2bbe0>", "forward": "<function ActorCriticPolicy.forward at 0x16df2bc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x16df2bd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16df2bd90>", "_predict": "<function ActorCriticPolicy._predict at 0x16df2be20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16df2beb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16df2bf40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x16df34040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16dcd05c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 50, "num_timesteps": 1024000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674580291010048000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNRMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAEgAAAAAAAI1/Hj2T4K87R/GGPh2/mD2oRey+kX5/P4CYqLyk/H+/AAAAAJ03kT8A2DA4LDqQPl2XyL4AAIA/nNmnPuRrqT5T6q4+HvW4PoTEyD7wdd8+k+cBP0J0ID8hwGI/AACAP/GiAT69FKo8xsunPkzxhL3cru6+2FiMvwAgFbxgAzw/AACAPy97ij8k6hO/AG5PuzstE74AAIA/SmqfPn3Coz7Htas+Wy22Pru9xj763+A+TecDP1iPID9LYFg/AACAPxcWIj542DW9MHaQPnPtmjzGIim/AgCAP+ykYT4AAIC/AAAAAOfVjj8AAAAAwtKYPp/yBL8AAAAA3rmdPvUUoD5JL6c+07KyPq8OxD4QZd0+7lsFPzJhLT+oTGo/AACAP+l0Mz4fIEq9PAKCPiGU9DwImtC+AgCAPwCTrr58SZW/AAAAAG50jz8AAAAAOAKrPv3/fz8AAAAAfn+iPrRVpD4LFqo+qEizPtUYwj7/Vd0+VGcAP07oID8aFmA/AACAPyaw6D0X4n+6B1SePs/x7Lx2dPW88PB2vqham778/38/AAAAAAJzjD8AAICwBuWePv//fz8AAAAAq2uxPiu9tD7dRbw+08HIPg8Z2z54vPQ+iEoOP2YhMD+1YnQ/AACAPxV83j0y9Ks7SjupPmr+VrwoAZE7uAGAP4CQFr/h/3+/AACAP/0wkT/ofG67uCtlvk/2Xr4AAIA/a8igPmyWpT5IR60+Vte3PqpIyT7+TeU+HnkGPwtlJj9FPFk/AACAP/gclj6YuQ09NhxEPqFlMj31/K2+8P9/P4Qt3L79/3+/AAAAAP7/hT/8/3+/wIxFvf36JT4AAIA/ZxaSPji4kj6s0pY+TQSgPiJFrz5mucg+Qu/3PkAOLj/4+HY/AACAP4gNrD5DOqQ8/+2zPgalv7zWVc++kYtMv+Bm276g9eU+AACAP8M5ij8y0ca9YCMmvifzaj4AAIA/u6aRPlZNkz5Japg+nrChPoZWsD54AcU+O9jnPkb6Dz+wi04/AACAPw6A/j0oC8c9eQM5PjPAlbwLQRW+WAGXvrxFt777/3+/AACAPzaLhT/8/3+/AO+yPgIAgD8AAAAAb4atPsIjsj7JX7g+8nrGPoZ83j69XP8+Fa4XP0bRQD8AAIA/AACAP4kimT5dPAE8QDHFPrOem73Qg9O9OHpjv9wbC7+UMY4+AAAAAAQgiz///38/JHYrPgEAgL8AAAAAOnalPssvpz7c6Kw+KHO3PofYxT4DXts+9NL/Pi0wHz+mpFE/AACAPxpPpj76i/S8/PfRPimgOb0IkeK+XUcEvzygib6vntk+AACAP+Cdgz/yCYW9BnMcP/3/fz8AAAAAk0iiPmAgpD7e9Kg+cjixPscRwD4gs9Y+w5L6PgpcGD9g1j4/AACAP+5nTb1DmYO8F+XHPpoTwTyoceS7xpwivwDiLL7fww8/AACAP1a7lj/9/38/kIbkPgIAgL8AAAAATKW6PrDMvD7t6sM+3ebPPiAz4T7mvfg+aqAPP+5wLD/nGGM/AACAP4pNtD3fumg9UrrWPg7mdD189Pq+sNu6PsBz6z3+NBC/AACAP286kT8AAGA0MNlKPlzLf78AAIA/eAClPoWCpz5Po60+KgW3Pg+exT4gSNs+bpn9PttfHj81ml8/AACAP2tQjT6/8Tc7HU2sPoQZLj3JiQW/BACAP9Bg5b0AAIC/AAAAAFlTjz8AACCygOscPPz/fz8AAIA/ErmdPp2Dnz7T2KM+r66rPkOTtj5H4Mg+pXPnPnlIDD9tkzk/AACAP96UTz/mLsG9sdSVPrIDbT1HOky/5OjZPchnDr5Dxrc+AACAP4cajT8AAAAArmUhPwAAgD8AAAAA5EC0PvBMtj5Kvbw+05DIPn7C2z5K1vk+cf4VP++PRz8AAIA/AACAP5EOOT5cEH08MwWxPhbWbDzs2ti+AACAP0RJn74BAIC/AAAAAN5cjj+Wr1g/gB3EvAAAgL8AAAAAZsifPoaKoz4P1qo+AEC1PqYHxz6rUuI+4B8EP/duHj8uAFM/AACAPzUmgj58OuE8ZJvhPpZUG71fTGS+tQCAv3zdAL/PdO0+AACAP4gCkD8AAPA0jvi/PowUKD8AAAAAMqSWPgIvmT4dvqA+9z6tPr70vz7Phdg+M5j9Pvp7HT+K+E8/AACAP36Wtz7KrxY9rLOIPvsrDD31eBC/AgCAvwCYt7rs4DU/AACAP45Agj/8/3+/6KZaPgMAgD8AAAAA8zykPmyLpD4tsag+bYGxPoofwT5Tfts+YUQCP4sHKz9d2Xk/AACAPyfmID8UtSo9WL6yPhbHIj3Rk0y/fp6KvwCHWzuUWj8/AACAP/JnkD8AAAAAPPSkPvf/f78AAAAAWm+vPumtsT579rg+QHTDPueV0z4q8u4+CpYOP4kBNj853nI/AACAPxw5VT1znsy855lOPljmAz5joUy/AN6UuUJaGj/P8eE+AACAP9r/kD8AgHg3InnoPsgjAb4AAIA/TIuYPslGmj4CrZ8+ymipPqjTuD50e9A+1Wb1Pu9JGT/N+04/AACAPwGz9D0qJBA7YmGyPk0y6j1QvlW/AIqMubaHxz7pWmE+AAAAAGZJkT8AXpQ3kIRjPihW+r4AAIA/ro6SPgY1lj7Xmpw+8jinPt1wtj72V80+NBf0PtxuHz+jp2w/AACAP52CQT59K1E8gniwPvib0LzqhZM8/GRav+jk+r7YmbM+AAAAAAvKkj8AAIA/GChPPi91lb8AAAAA5m+pPjhRqj4e4q0+gVK1PozSwT6SfNU+Qsj6Pkv5HT8l41g/AACAPz3UqD7XTJw7O/CoPoWESjwJlCa+/v9/v5SsCb9h9g4/AAAAAOGdjT8AAAAAwNkPvX3f5b0AAAAAfXKZPiyBmT4LXZ4+wcCnPkJltz6BJ9E+/Xv5PqX3Gz/6Bl0/AACAP1P/ND76hca9l2iyPhqmxr1W+uW+tP9/P4DPwb0BAIC/AAAAAPxQij8OAIA/4DbpPdT/f78AAAAAOgSpPoFLqT5mvK4+uaG6Pl3UzT6C3e4+NPMRP+pBOj/G030/AACAP4kP2z49Z9U8h9mxPihQ0bvmhf6+//9/vzi+V768Rxs/AACAP7D2jD9ovny+0GSbPfz/fz8AAAAAZyCfPoHeoD7fCqY+506wPqfEwT7B0eA+t5ILPxjWND8AAIA/AACAP8N1rT58Jrc9Yt9GPkyvc711NDK+PwOAv1g1FL/Pti0+AACAP5A7hT8CdOe+IFbBPRUAgD8AAAAARXqbPkk+nT4Xv6I+yqqsPo9hvD7PfdQ+8R76PpI8HD88iVY/AACAPyg61D37/z+9yTrFPny1AD1LRAS/s0FjP4ATkr0AAIC/AAAAABJwgj8BAIC/6l2TPsWmWT8AAIA/ElmdPiBfnz6Miqc+BJi0PsEUyD4vdOI+lbQFPw66JD8SUVo/AACAP6Lj8jsk34E9eqBPPnHxlj28BB2/0K+3PHAidz4AAIC/AAAAAGQekT8AAAAAfOPFPuEMeb8AAIA//hWdPpISnz51Pqc+WC+0PmFQxz53XuA+nDYEP8JEJD+oQFw/AACAPw0TEj4U+++9D8b/PtaqZb3mFC6/AFVCvih+BD5L1kg/AACAP2yGlz/eHKU/sLQLPwAAgL8AAAAAMFuSPsVqlD6nlZo+vkKlPrd3tj44XNE+ABH4PgdWHD8pgFE/AACAP26oAT5T2Es9tThpPha1ujqvA3u9gcjqPoCEy74LVra+AAAAAKyVjj/PA46+ZLmmvvDTtL4AAIA/E8SkPp2kqD4o7q4+6AK5PlECyT57g+M+KU0FPwolJj9As2M/AACAP3xWZz4cOg49BlabPlwiHb2+a6U9JQCAP8Bxwr77/3+/AAAAAGwohD/COhw/UGtFvgEAgL8AAIA/w4mxPsejsD4ENLQ+KOO8Pkveyz4mvOU+gO4JP7XJLz8AAIA/AACAPzNUazuqifC8cdioPir+Tb12GQi/dZQ7v74vuT63FVU/AACAP/9/kD8AAAAAmFsbPgMAgD8AAAAAeQCpPs41rj4I87U+tCHBPgHy2D5g/PY+L0sPP/yHLT+CPGI/AACAP6er0z2//no9EnWNPkDzSz1YsMa+FACAP4BrVT38/3+/AAAAAN3ykD8AAICzsE8kPgcAgL8AAIA/uGGoPjf8pz7uN6s+sJO1PuoyxT4sCdw+tzoAP668Hz+syV4/AACAP3g8Pj5djZI8iJ1+PozJ67zSm8U8AQCAvzxWDL+9Ec0+AAAAAPWUjz8AAAAAwleXPgMAgD8AAAAA6jajPmwRpT5V2Ko+aUK1Pl3BxT7CEN8+SNwCP2qaJD9BxF0/AACAP8hF1D2vTDy9It/rPikzwDzzFeK+4+wWP2BhGb2d9Ha/AACAP/dkcz+qDzm/k9wxPyuzxj8AAIA/2r2iPhyrpD7fFKo+Sh6zPkN3wT4sH9g+VV/9Pju2Fj8+k0E/AACAP22QsD7tZYI4VciHPqHMAD3mSLi+0rgmvtBa774w6zM+AAAAAFDLjj8AwHCz6N6Nvjwkpb4AAIA/wm+WPsiOlj69K5o+7gqiPp5krj6QTcA+clPbPhXfBj+OLDA/AACAP5r2K717sA++qm/gPgkBnbwQ6xe/+/9/P2SQNT4BAIC/AAAAAFE3fD+siJS+9VRcP+CkBkAAAIA/TLSfPkjWoT5T9qc+ioe1PoXdxz5RvOM+jY0KPxNTMz/jiHQ/AACAP1Td3D3t7GM8GbgEP7yLfb1VXJ6+C4yJv1A6mb4b7Sg/AACAP4gxjj8AAAAAgNoxPW99FL8AAIA/vCiePjIGoj6gwak+t1C1PlIMxz69gOE+t9kEP4PEJj8KHGY/AACAPzR3ED4hFJ69mFmuPmZdKj2/pR+/PL7BvborkD7HBiM/AACAP6oViT/i/38/ZqCRPhgAgL8AAIA/ROmbPuKhnT56B6M+W8WsPj+HvD4iJtg+Pl4BPy66Ij8Zcl8/AACAP2OKI7wmwBC+jPDWPjp9kTxbtlG/AACAs0xLVT8AAIA/AAAAABlEhT/7/3+/7+EtPwQAgD8AAAAAVXaiPr3Fpj5rvrA+Q6bAPtqI2D6Nw/g+jcwTP61HOj+3gnw/AACAP4+z3j4JZaK8zZWRPjbzhz0R5CC/1MZzv4Cg5LylAoA/AAAAAIH9iT/1tCK/DE5vPggAgD8AAAAA+jOiPkYsoD5IgKE+11unPtBrsj7abMU+UhvmPo7iET97UlA/AACAP+iAaT7AYpG9H3/iPs67v7woDC+/m/dHPwAHFb1pC12/AACAPwVZiD/3/38/sHnDPQgAgL8AAIA/6YWbPvThnj4wcqQ+D0KuPhUfvT5rpNI+g0TxPrcdDj/0pzw/AACAP1pNQj77FA+9sXaNPrZ1Brx3xka/ILLOvjDwND6FZx8/AAAAAIxplD/uA00/mEhJPgEAgL8AAIA/XG6HPhOyiT4IOo8+B+CYPj8JqD7jCb8++XPhPhAaDj/0c04/AACAP+9xsT4FMvS9rEzKPoAF/jwzVlO/AADAtlB3GD7YSDs/AAAAAIMgjT8IkFw+4oslPwMAgD8AAAAA9XWQPrJOkT6MepU+s2SePoL1rD5LocQ+AqjnPi6TDj/CCFE/AACAP53v9j1Jo+E8thudPrSFUr3inJu9/P9/P2i9IL+ZDzG/AAAAAPVfiz+UYuq+8B5aPrGClz8AAAAAE22ZPlwTnT4TWaU+fcOyPt9exz59hOU+Us4HP3SvJz/naV4/AACAPy1OAj4qVTc9J01pPnhh1j2r6BS/MRWAPwQmTD63gLq/AACAP/zZkD8AAIe3uKjjPdFpgL8AAAAAVmWdPjcsnj4dJKI+PGSrPp0OvD7Fl9o+cY0BP2OtLj8AAIA/AACAP6VJMj6SXNk7QUtQPjTHCD1DbmC+5NnjvmABzr7x8rI+AACAP490kT8AALgzAIZRPG1xnL4AAIA/eOuWPrm5mD5vGp4+9a2nPqWFtz7y29I+6EX6PnDeIT+qG3Q/AACAP97OGj0qofi9vNuqPpLlaT3AiSu/+v9/Pw+xDz+RTSC+AAAAALtEkT8AAAAAoHe3PXXL+D0AAIA/PPWoPlMnqT5Juaw+bJG2PuIjyD7cN+Y+48IJPwMOKT+QWmI/AACAP9vRDz42GwA9AESfPcwWED0/WmW+/f9/PwDTkb4AAIC/AAAAAHVsij85b5S+oGi9vQ/tL70AAIA/xRGoPp52qj7ebbA+Kgy7PvSsyz5ajOQ+yW4FP1XhIT+QiVs/AACAP5T8gz7Nbzu92nzdPsgpWr2e+/C+8ASAPwhTy74eAIC/AAAAAN/DdT8I+38/KhOmPsMDgL8AAIA/sgCTPrI3lj5UC50+okCoPkIYuD5dRtE+ken4Po1OFz/cDUE/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLMksYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwmosYW0QUMCUhpRSlIwBbJRNMQGMAXSUR0CCO3wYtQKsdX2UKGgGaAloD0MIKSUEq+o1KkCUhpRSlGgVTU8DaBZHQII8es90Rvp1fZQoaAZoCWgPQwgSiNf1Cz5sQJSGlFKUaBVNQAZoFkdAgj6inpB5X3V9lChoBmgJaA9DCO9v0F597GxAlIaUUpRoFU1ABmgWR0CCPrQ79ycTdX2UKGgGaAloD0MIQpdw6C3mV8CUhpRSlGgVS4NoFkdAgkAy6MBIWnV9lChoBmgJaA9DCI/k8h/SdG5AlIaUUpRoFU0MBmgWR0CCQK3Ov+wUdX2UKGgGaAloD0MICW8PQkA2bkCUhpRSlGgVTSMGaBZHQIJBzsniNsF1fZQoaAZoCWgPQwi1/pYA/Ms9QJSGlFKUaBVNswNoFkdAgkK3ztkWh3V9lChoBmgJaA9DCMa/z7jwT25AlIaUUpRoFU0mBmgWR0CCQuofCAMEdX2UKGgGaAloD0MIPujZrPoSWMCUhpRSlGgVS4doFkdAgkbMP8Q7LnV9lChoBmgJaA9DCM3Ji0xAmm5AlIaUUpRoFU3/BWgWR0CCSDoh6jWTdX2UKGgGaAloD0MIw6BMo0nTbUCUhpRSlGgVTUAGaBZHQIJIfY4ACGN1fZQoaAZoCWgPQwh7EALyJdNWQJSGlFKUaBVNvAVoFkdAgkuYzJp35nV9lChoBmgJaA9DCPwbtFcfkFzAlIaUUpRoFUtYaBZHQIJMb/jsD4h1fZQoaAZoCWgPQwjP1yyXjQ5tQJSGlFKUaBVNQAZoFkdAgk8bjkuHvnV9lChoBmgJaA9DCLcJ98q8aW5AlIaUUpRoFU0HBmgWR0CCUApTdcjadX2UKGgGaAloD0MIhpDz/j9GUkCUhpRSlGgVTf4EaBZHQIJQ5vYODrZ1fZQoaAZoCWgPQwjT2jS218L/P5SGlFKUaBVNtwJoFkdAglKHlGPPs3V9lChoBmgJaA9DCCQlPQytDkXAlIaUUpRoFU07AmgWR0CCU6VclgMMdX2UKGgGaAloD0MIaqSl8nawbUCUhpRSlGgVTUAGaBZHQIJT4VGkN4J1fZQoaAZoCWgPQwj3dHXHYltsQJSGlFKUaBVNQAZoFkdAgm1BTGYKIHV9lChoBmgJaA9DCMEb0qjAcW5AlIaUUpRoFU0YBmgWR0CCbdxRVIZqdX2UKGgGaAloD0MINIEiFrEDbkCUhpRSlGgVTUAGaBZHQIJuMT6BRQ91fZQoaAZoCWgPQwjTFAFO72xSQJSGlFKUaBVNJQVoFkdAgm51afSQYHV9lChoBmgJaA9DCH/4+e/B425AlIaUUpRoFU3ZBWgWR0CCcN6KLsKLdX2UKGgGaAloD0MIxLRv7q9eJMCUhpRSlGgVTaICaBZHQIJzRUm2LHd1fZQoaAZoCWgPQwiqfqXz4ZduQJSGlFKUaBVNBAZoFkdAgnNddmg8KXV9lChoBmgJaA9DCOGX+nnTkW5AlIaUUpRoFU0OBmgWR0CCdSNc4YJmdX2UKGgGaAloD0MIa5kMx/MWbUCUhpRSlGgVTUAGaBZHQIJ1QagmJFd1fZQoaAZoCWgPQwiMu0G01v5tQJSGlFKUaBVNLAZoFkdAgnWpiZv1lHV9lChoBmgJaA9DCLfxJyob5E5AlIaUUpRoFU3ABGgWR0CCdw9V3ljmdX2UKGgGaAloD0MIsCDNWDRnQ8CUhpRSlGgVTQkCaBZHQIJ3NvS+g151fZQoaAZoCWgPQwgQzqeOVeJZQJSGlFKUaBVNYwVoFkdAgndmhVU+93V9lChoBmgJaA9DCCUhkbZx/G1AlIaUUpRoFU1ABmgWR0CCecIRh+fAdX2UKGgGaAloD0MIBHEeTuBibECUhpRSlGgVTUAGaBZHQIJ8KoESuhd1fZQoaAZoCWgPQwhKsg5HVzJWQJSGlFKUaBVN0QRoFkdAgnylz+3pfXV9lChoBmgJaA9DCOSiWkSUHWhAlIaUUpRoFU1ABmgWR0CCfmxC6YmcdX2UKGgGaAloD0MIzvv/OGGBW8CUhpRSlGgVSzdoFkdAgn9AfMfRu3V9lChoBmgJaA9DCOsdboeGWl7AlIaUUpRoFUtQaBZHQIJ/9UfgaWJ1fZQoaAZoCWgPQwjqIoWy8C5tQJSGlFKUaBVNQAZoFkdAgoDxVQyhz3V9lChoBmgJaA9DCFQ4glQKbW1AlIaUUpRoFU1ABmgWR0CCgh3s5XEJdX2UKGgGaAloD0MIlq/L8J84RUCUhpRSlGgVTdoDaBZHQIKDPYL9deJ1fZQoaAZoCWgPQwjeA3RfTtVtQJSGlFKUaBVNQAZoFkdAgoldLQHAynV9lChoBmgJaA9DCH78pUX9125AlIaUUpRoFU3XBWgWR0CCiXub7TDwdX2UKGgGaAloD0MIFYvfFFbuS8CUhpRSlGgVTYQBaBZHQIKJx7Vrhzh1fZQoaAZoCWgPQwjVCWgibIROQJSGlFKUaBVNEgRoFkdAgosbah6By3V9lChoBmgJaA9DCMcqpWd6XG5AlIaUUpRoFU0lBmgWR0CCiy01IiC8dX2UKGgGaAloD0MIR8fVyC6hbkCUhpRSlGgVTe0FaBZHQIKMTGvOhTR1fZQoaAZoCWgPQwjqzhPPWZRtQJSGlFKUaBVNQAZoFkdAgo1YfOlfq3V9lChoBmgJaA9DCDQPYJFf225AlIaUUpRoFU3QBWgWR0CCj46CDmKZdX2UKGgGaAloD0MI3q8CfLckbUCUhpRSlGgVTUAGaBZHQIKQPFvQ4S91fZQoaAZoCWgPQwgKuyh64CBuQJSGlFKUaBVNNgZoFkdAgpDbv5P/JnV9lChoBmgJaA9DCL5sO22N6C7AlIaUUpRoFU1FAmgWR0CCkTkJa7mMdX2UKGgGaAloD0MIzhd7L77HbUCUhpRSlGgVTUAGaBZHQIKUy+ajN6h1fZQoaAZoCWgPQwjkvP+Pk6xuQJSGlFKUaBVN6QVoFkdAgpTfJNj9XXV9lChoBmgJaA9DCIaQ8/6/M25AlIaUUpRoFU0qBmgWR0CClW3WFvhqdX2UKGgGaAloD0MItDhjmBNPbkCUhpRSlGgVTSoGaBZHQIKV0JQcghd1fZQoaAZoCWgPQwi95H/yd/8wwJSGlFKUaBVNuwJoFkdAgphwco6S1XV9lChoBmgJaA9DCC0JUFPLlkRAlIaUUpRoFU3BA2gWR0CCmKilBQendX2UKGgGaAloD0MI+MJkqmDGbkCUhpRSlGgVTQMGaBZHQIKY0DB/I811fZQoaAZoCWgPQwh9yjFZ3FptQJSGlFKUaBVNQAZoFkdAgpkHezlcQnV9lChoBmgJaA9DCH0HP3EA/l9AlIaUUpRoFU0YBmgWR0CCmRdUsFt9dX2UKGgGaAloD0MIXcE24slEVECUhpRSlGgVTYMEaBZHQIKbCH6/IsB1fZQoaAZoCWgPQwiB0Hr4st5uQJSGlFKUaBVN6QVoFkdAgrd8rAgxJ3V9lChoBmgJaA9DCNV2E3xTSW5AlIaUUpRoFU0qBmgWR0CCuJQID5j6dX2UKGgGaAloD0MIJZASu7Y+bUCUhpRSlGgVTUAGaBZHQIK5lRxcVxl1fZQoaAZoCWgPQwhycOmY8zZWQJSGlFKUaBVNPgVoFkdAgrn2+PBBRnV9lChoBmgJaA9DCM7GSsyzv1NAlIaUUpRoFU1gBGgWR0CCulL9MsYmdX2UKGgGaAloD0MID9WUZB2YbkCUhpRSlGgVTQsGaBZHQIK7TUwztTl1fZQoaAZoCWgPQwiz6nO1FeFGQJSGlFKUaBVNSARoFkdAgrxfLDAJs3V9lChoBmgJaA9DCApJZvUOfF7AlIaUUpRoFUtQaBZHQIK9+nIhhYx1fZQoaAZoCWgPQwj/BBcraqltQJSGlFKUaBVNQAZoFkdAgr4fVI7NjnV9lChoBmgJaA9DCJPlJJS+TVJAlIaUUpRoFU09BGgWR0CCvlXlr/KhdX2UKGgGaAloD0MIT+j1J/EpI8CUhpRSlGgVTTgDaBZHQIK/VzGPxQV1fZQoaAZoCWgPQwj2QZYFE0NuQJSGlFKUaBVNDwZoFkdAgsEMO5J9RnV9lChoBmgJaA9DCEXY8PRK2VfAlIaUUpRoFUuOaBZHQILDTTx5LRN1fZQoaAZoCWgPQwiG5GTiVslFQJSGlFKUaBVNkgRoFkdAgsYspgCwKXV9lChoBmgJaA9DCCRiSiTRrUtAlIaUUpRoFU21A2gWR0CCx9iPyTY/dX2UKGgGaAloD0MIxLDDmHSCbkCUhpRSlGgVTQkGaBZHQILIbdYW+Gp1fZQoaAZoCWgPQwgfgxWn2uVtQJSGlFKUaBVNOQZoFkdAgsnidrftQnV9lChoBmgJaA9DCAoS290DmmBAlIaUUpRoFU31BWgWR0CCyfZJTVDsdX2UKGgGaAloD0MIsMka9ZDsbUCUhpRSlGgVTScGaBZHQILK5mRNh3J1fZQoaAZoCWgPQwjLaU/JOU5vQJSGlFKUaBVNugVoFkdAgswbKifxt3V9lChoBmgJaA9DCNuGURA8G1tAlIaUUpRoFU0LBmgWR0CCzKRHww0wdX2UKGgGaAloD0MIGy0HeqiJbkCUhpRSlGgVTfwFaBZHQILOHfyf+S91fZQoaAZoCWgPQwiC4VzDDDdAwJSGlFKUaBVN1QFoFkdAgs6zu4PPLXV9lChoBmgJaA9DCLb103/WqlzAlIaUUpRoFUtLaBZHQILP1ETg2qF1fZQoaAZoCWgPQwjXvoBeuMxXwJSGlFKUaBVLZ2gWR0CC0AnYxtYTdX2UKGgGaAloD0MILH5TWCkybkCUhpRSlGgVTSAGaBZHQILQ9chTwUh1fZQoaAZoCWgPQwh79lymJphuQJSGlFKUaBVN9wVoFkdAgtRR2KVIJHV9lChoBmgJaA9DCIqsNZTapG5AlIaUUpRoFU3iBWgWR0CC1S7o0Q9SdX2UKGgGaAloD0MIEAaeew+wbkCUhpRSlGgVTQUGaBZHQILWvG+9Jz11fZQoaAZoCWgPQwhpAkUsYtxewJSGlFKUaBVLd2gWR0CC3LSMtK7JdX2UKGgGaAloD0MIvRjKiXYJW0CUhpRSlGgVTcYFaBZHQILdHomois51fZQoaAZoCWgPQwg25+CZUA5uQJSGlFKUaBVNNQZoFkdAgt26Df3vhXV9lChoBmgJaA9DCEYMO4zJF29AlIaUUpRoFU3FBWgWR0CC3fH0btJGdX2UKGgGaAloD0MI1Em2upwVb0CUhpRSlGgVTe8FaBZHQILg7FuNxVB1fZQoaAZoCWgPQwiuZTIcT9NuQJSGlFKUaBVN7gVoFkdAguMxvNu+AXV9lChoBmgJaA9DCNyCpbqA1VHAlIaUUpRoFU1AAWgWR0CC5ShRqGlAdX2UKGgGaAloD0MIvHfUmBAxVECUhpRSlGgVTfcEaBZHQILl27lJYkp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 240, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x1437d79a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1437d7a30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1437d7ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1437d7b50>", "_build": "<function ActorCriticPolicy._build at 0x1437d7be0>", "forward": "<function ActorCriticPolicy.forward at 0x1437d7c70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x1437d7d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1437d7d90>", "_predict": "<function ActorCriticPolicy._predict at 0x1437d7e20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1437d7eb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1437d7f40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1437e8040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x1437e1ac0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 50, "num_timesteps": 1024000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674580291010048000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwmosYW0QUMCUhpRSlIwBbJRNMQGMAXSUR0CCO3wYtQKsdX2UKGgGaAloD0MIKSUEq+o1KkCUhpRSlGgVTU8DaBZHQII8es90Rvp1fZQoaAZoCWgPQwgSiNf1Cz5sQJSGlFKUaBVNQAZoFkdAgj6inpB5X3V9lChoBmgJaA9DCO9v0F597GxAlIaUUpRoFU1ABmgWR0CCPrQ79ycTdX2UKGgGaAloD0MIQpdw6C3mV8CUhpRSlGgVS4NoFkdAgkAy6MBIWnV9lChoBmgJaA9DCI/k8h/SdG5AlIaUUpRoFU0MBmgWR0CCQK3Ov+wUdX2UKGgGaAloD0MICW8PQkA2bkCUhpRSlGgVTSMGaBZHQIJBzsniNsF1fZQoaAZoCWgPQwi1/pYA/Ms9QJSGlFKUaBVNswNoFkdAgkK3ztkWh3V9lChoBmgJaA9DCMa/z7jwT25AlIaUUpRoFU0mBmgWR0CCQuofCAMEdX2UKGgGaAloD0MIPujZrPoSWMCUhpRSlGgVS4doFkdAgkbMP8Q7LnV9lChoBmgJaA9DCM3Ji0xAmm5AlIaUUpRoFU3/BWgWR0CCSDoh6jWTdX2UKGgGaAloD0MIw6BMo0nTbUCUhpRSlGgVTUAGaBZHQIJIfY4ACGN1fZQoaAZoCWgPQwh7EALyJdNWQJSGlFKUaBVNvAVoFkdAgkuYzJp35nV9lChoBmgJaA9DCPwbtFcfkFzAlIaUUpRoFUtYaBZHQIJMb/jsD4h1fZQoaAZoCWgPQwjP1yyXjQ5tQJSGlFKUaBVNQAZoFkdAgk8bjkuHvnV9lChoBmgJaA9DCLcJ98q8aW5AlIaUUpRoFU0HBmgWR0CCUApTdcjadX2UKGgGaAloD0MIhpDz/j9GUkCUhpRSlGgVTf4EaBZHQIJQ5vYODrZ1fZQoaAZoCWgPQwjT2jS218L/P5SGlFKUaBVNtwJoFkdAglKHlGPPs3V9lChoBmgJaA9DCCQlPQytDkXAlIaUUpRoFU07AmgWR0CCU6VclgMMdX2UKGgGaAloD0MIaqSl8nawbUCUhpRSlGgVTUAGaBZHQIJT4VGkN4J1fZQoaAZoCWgPQwj3dHXHYltsQJSGlFKUaBVNQAZoFkdAgm1BTGYKIHV9lChoBmgJaA9DCMEb0qjAcW5AlIaUUpRoFU0YBmgWR0CCbdxRVIZqdX2UKGgGaAloD0MINIEiFrEDbkCUhpRSlGgVTUAGaBZHQIJuMT6BRQ91fZQoaAZoCWgPQwjTFAFO72xSQJSGlFKUaBVNJQVoFkdAgm51afSQYHV9lChoBmgJaA9DCH/4+e/B425AlIaUUpRoFU3ZBWgWR0CCcN6KLsKLdX2UKGgGaAloD0MIxLRv7q9eJMCUhpRSlGgVTaICaBZHQIJzRUm2LHd1fZQoaAZoCWgPQwiqfqXz4ZduQJSGlFKUaBVNBAZoFkdAgnNddmg8KXV9lChoBmgJaA9DCOGX+nnTkW5AlIaUUpRoFU0OBmgWR0CCdSNc4YJmdX2UKGgGaAloD0MIa5kMx/MWbUCUhpRSlGgVTUAGaBZHQIJ1QagmJFd1fZQoaAZoCWgPQwiMu0G01v5tQJSGlFKUaBVNLAZoFkdAgnWpiZv1lHV9lChoBmgJaA9DCLfxJyob5E5AlIaUUpRoFU3ABGgWR0CCdw9V3ljmdX2UKGgGaAloD0MIsCDNWDRnQ8CUhpRSlGgVTQkCaBZHQIJ3NvS+g151fZQoaAZoCWgPQwgQzqeOVeJZQJSGlFKUaBVNYwVoFkdAgndmhVU+93V9lChoBmgJaA9DCCUhkbZx/G1AlIaUUpRoFU1ABmgWR0CCecIRh+fAdX2UKGgGaAloD0MIBHEeTuBibECUhpRSlGgVTUAGaBZHQIJ8KoESuhd1fZQoaAZoCWgPQwhKsg5HVzJWQJSGlFKUaBVN0QRoFkdAgnylz+3pfXV9lChoBmgJaA9DCOSiWkSUHWhAlIaUUpRoFU1ABmgWR0CCfmxC6YmcdX2UKGgGaAloD0MIzvv/OGGBW8CUhpRSlGgVSzdoFkdAgn9AfMfRu3V9lChoBmgJaA9DCOsdboeGWl7AlIaUUpRoFUtQaBZHQIJ/9UfgaWJ1fZQoaAZoCWgPQwjqIoWy8C5tQJSGlFKUaBVNQAZoFkdAgoDxVQyhz3V9lChoBmgJaA9DCFQ4glQKbW1AlIaUUpRoFU1ABmgWR0CCgh3s5XEJdX2UKGgGaAloD0MIlq/L8J84RUCUhpRSlGgVTdoDaBZHQIKDPYL9deJ1fZQoaAZoCWgPQwjeA3RfTtVtQJSGlFKUaBVNQAZoFkdAgoldLQHAynV9lChoBmgJaA9DCH78pUX9125AlIaUUpRoFU3XBWgWR0CCiXub7TDwdX2UKGgGaAloD0MIFYvfFFbuS8CUhpRSlGgVTYQBaBZHQIKJx7Vrhzh1fZQoaAZoCWgPQwjVCWgibIROQJSGlFKUaBVNEgRoFkdAgosbah6By3V9lChoBmgJaA9DCMcqpWd6XG5AlIaUUpRoFU0lBmgWR0CCiy01IiC8dX2UKGgGaAloD0MIR8fVyC6hbkCUhpRSlGgVTe0FaBZHQIKMTGvOhTR1fZQoaAZoCWgPQwjqzhPPWZRtQJSGlFKUaBVNQAZoFkdAgo1YfOlfq3V9lChoBmgJaA9DCDQPYJFf225AlIaUUpRoFU3QBWgWR0CCj46CDmKZdX2UKGgGaAloD0MI3q8CfLckbUCUhpRSlGgVTUAGaBZHQIKQPFvQ4S91fZQoaAZoCWgPQwgKuyh64CBuQJSGlFKUaBVNNgZoFkdAgpDbv5P/JnV9lChoBmgJaA9DCL5sO22N6C7AlIaUUpRoFU1FAmgWR0CCkTkJa7mMdX2UKGgGaAloD0MIzhd7L77HbUCUhpRSlGgVTUAGaBZHQIKUy+ajN6h1fZQoaAZoCWgPQwjkvP+Pk6xuQJSGlFKUaBVN6QVoFkdAgpTfJNj9XXV9lChoBmgJaA9DCIaQ8/6/M25AlIaUUpRoFU0qBmgWR0CClW3WFvhqdX2UKGgGaAloD0MItDhjmBNPbkCUhpRSlGgVTSoGaBZHQIKV0JQcghd1fZQoaAZoCWgPQwi95H/yd/8wwJSGlFKUaBVNuwJoFkdAgphwco6S1XV9lChoBmgJaA9DCC0JUFPLlkRAlIaUUpRoFU3BA2gWR0CCmKilBQendX2UKGgGaAloD0MI+MJkqmDGbkCUhpRSlGgVTQMGaBZHQIKY0DB/I811fZQoaAZoCWgPQwh9yjFZ3FptQJSGlFKUaBVNQAZoFkdAgpkHezlcQnV9lChoBmgJaA9DCH0HP3EA/l9AlIaUUpRoFU0YBmgWR0CCmRdUsFt9dX2UKGgGaAloD0MIXcE24slEVECUhpRSlGgVTYMEaBZHQIKbCH6/IsB1fZQoaAZoCWgPQwiB0Hr4st5uQJSGlFKUaBVN6QVoFkdAgrd8rAgxJ3V9lChoBmgJaA9DCNV2E3xTSW5AlIaUUpRoFU0qBmgWR0CCuJQID5j6dX2UKGgGaAloD0MIJZASu7Y+bUCUhpRSlGgVTUAGaBZHQIK5lRxcVxl1fZQoaAZoCWgPQwhycOmY8zZWQJSGlFKUaBVNPgVoFkdAgrn2+PBBRnV9lChoBmgJaA9DCM7GSsyzv1NAlIaUUpRoFU1gBGgWR0CCulL9MsYmdX2UKGgGaAloD0MID9WUZB2YbkCUhpRSlGgVTQsGaBZHQIK7TUwztTl1fZQoaAZoCWgPQwiz6nO1FeFGQJSGlFKUaBVNSARoFkdAgrxfLDAJs3V9lChoBmgJaA9DCApJZvUOfF7AlIaUUpRoFUtQaBZHQIK9+nIhhYx1fZQoaAZoCWgPQwj/BBcraqltQJSGlFKUaBVNQAZoFkdAgr4fVI7NjnV9lChoBmgJaA9DCJPlJJS+TVJAlIaUUpRoFU09BGgWR0CCvlXlr/KhdX2UKGgGaAloD0MIT+j1J/EpI8CUhpRSlGgVTTgDaBZHQIK/VzGPxQV1fZQoaAZoCWgPQwj2QZYFE0NuQJSGlFKUaBVNDwZoFkdAgsEMO5J9RnV9lChoBmgJaA9DCEXY8PRK2VfAlIaUUpRoFUuOaBZHQILDTTx5LRN1fZQoaAZoCWgPQwiG5GTiVslFQJSGlFKUaBVNkgRoFkdAgsYspgCwKXV9lChoBmgJaA9DCCRiSiTRrUtAlIaUUpRoFU21A2gWR0CCx9iPyTY/dX2UKGgGaAloD0MIxLDDmHSCbkCUhpRSlGgVTQkGaBZHQILIbdYW+Gp1fZQoaAZoCWgPQwgfgxWn2uVtQJSGlFKUaBVNOQZoFkdAgsnidrftQnV9lChoBmgJaA9DCAoS290DmmBAlIaUUpRoFU31BWgWR0CCyfZJTVDsdX2UKGgGaAloD0MIsMka9ZDsbUCUhpRSlGgVTScGaBZHQILK5mRNh3J1fZQoaAZoCWgPQwjLaU/JOU5vQJSGlFKUaBVNugVoFkdAgswbKifxt3V9lChoBmgJaA9DCNuGURA8G1tAlIaUUpRoFU0LBmgWR0CCzKRHww0wdX2UKGgGaAloD0MIGy0HeqiJbkCUhpRSlGgVTfwFaBZHQILOHfyf+S91fZQoaAZoCWgPQwiC4VzDDDdAwJSGlFKUaBVN1QFoFkdAgs6zu4PPLXV9lChoBmgJaA9DCLb103/WqlzAlIaUUpRoFUtLaBZHQILP1ETg2qF1fZQoaAZoCWgPQwjXvoBeuMxXwJSGlFKUaBVLZ2gWR0CC0AnYxtYTdX2UKGgGaAloD0MILH5TWCkybkCUhpRSlGgVTSAGaBZHQILQ9chTwUh1fZQoaAZoCWgPQwh79lymJphuQJSGlFKUaBVN9wVoFkdAgtRR2KVIJHV9lChoBmgJaA9DCIqsNZTapG5AlIaUUpRoFU3iBWgWR0CC1S7o0Q9SdX2UKGgGaAloD0MIEAaeew+wbkCUhpRSlGgVTQUGaBZHQILWvG+9Jz11fZQoaAZoCWgPQwhpAkUsYtxewJSGlFKUaBVLd2gWR0CC3LSMtK7JdX2UKGgGaAloD0MIvRjKiXYJW0CUhpRSlGgVTcYFaBZHQILdHomois51fZQoaAZoCWgPQwg25+CZUA5uQJSGlFKUaBVNNQZoFkdAgt26Df3vhXV9lChoBmgJaA9DCEYMO4zJF29AlIaUUpRoFU3FBWgWR0CC3fH0btJGdX2UKGgGaAloD0MI1Em2upwVb0CUhpRSlGgVTe8FaBZHQILg7FuNxVB1fZQoaAZoCWgPQwiuZTIcT9NuQJSGlFKUaBVN7gVoFkdAguMxvNu+AXV9lChoBmgJaA9DCNyCpbqA1VHAlIaUUpRoFU1AAWgWR0CC5ShRqGlAdX2UKGgGaAloD0MIvHfUmBAxVECUhpRSlGgVTfcEaBZHQILl27lJYkp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 240, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-BipedalWalker-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:672b1b43f33ebc4c0e2bbaaed69b67bdb592049ca6ddc7a31a113b02c2103c51
3
- size 179461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6c169db8a0ac98daef03c476616fec51e8470da3983d71e423eead9a44e6417
3
+ size 172830
ppo-BipedalWalker-v3/data CHANGED
@@ -4,26 +4,26 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x16df2b9a0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x16df2ba30>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x16df2bac0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x16df2bb50>",
11
- "_build": "<function ActorCriticPolicy._build at 0x16df2bbe0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x16df2bc70>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x16df2bd00>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x16df2bd90>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x16df2be20>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x16df2beb0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x16df2bf40>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x16df34040>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x16dcd05c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
  "observation_space": {
25
  ":type:": "<class 'gym.spaces.box.Box'>",
26
- ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
  "dtype": "float32",
28
  "_shape": [
29
  24
@@ -36,7 +36,7 @@
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.box.Box'>",
39
- ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
40
  "dtype": "float32",
41
  "_shape": [
42
  4
@@ -60,10 +60,7 @@
60
  ":type:": "<class 'function'>",
61
  ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
62
  },
63
- "_last_obs": {
64
- ":type:": "<class 'numpy.ndarray'>",
65
- ":serialized:": "gAWVNRMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAEgAAAAAAAI1/Hj2T4K87R/GGPh2/mD2oRey+kX5/P4CYqLyk/H+/AAAAAJ03kT8A2DA4LDqQPl2XyL4AAIA/nNmnPuRrqT5T6q4+HvW4PoTEyD7wdd8+k+cBP0J0ID8hwGI/AACAP/GiAT69FKo8xsunPkzxhL3cru6+2FiMvwAgFbxgAzw/AACAPy97ij8k6hO/AG5PuzstE74AAIA/SmqfPn3Coz7Htas+Wy22Pru9xj763+A+TecDP1iPID9LYFg/AACAPxcWIj542DW9MHaQPnPtmjzGIim/AgCAP+ykYT4AAIC/AAAAAOfVjj8AAAAAwtKYPp/yBL8AAAAA3rmdPvUUoD5JL6c+07KyPq8OxD4QZd0+7lsFPzJhLT+oTGo/AACAP+l0Mz4fIEq9PAKCPiGU9DwImtC+AgCAPwCTrr58SZW/AAAAAG50jz8AAAAAOAKrPv3/fz8AAAAAfn+iPrRVpD4LFqo+qEizPtUYwj7/Vd0+VGcAP07oID8aFmA/AACAPyaw6D0X4n+6B1SePs/x7Lx2dPW88PB2vqham778/38/AAAAAAJzjD8AAICwBuWePv//fz8AAAAAq2uxPiu9tD7dRbw+08HIPg8Z2z54vPQ+iEoOP2YhMD+1YnQ/AACAPxV83j0y9Ks7SjupPmr+VrwoAZE7uAGAP4CQFr/h/3+/AACAP/0wkT/ofG67uCtlvk/2Xr4AAIA/a8igPmyWpT5IR60+Vte3PqpIyT7+TeU+HnkGPwtlJj9FPFk/AACAP/gclj6YuQ09NhxEPqFlMj31/K2+8P9/P4Qt3L79/3+/AAAAAP7/hT/8/3+/wIxFvf36JT4AAIA/ZxaSPji4kj6s0pY+TQSgPiJFrz5mucg+Qu/3PkAOLj/4+HY/AACAP4gNrD5DOqQ8/+2zPgalv7zWVc++kYtMv+Bm276g9eU+AACAP8M5ij8y0ca9YCMmvifzaj4AAIA/u6aRPlZNkz5Japg+nrChPoZWsD54AcU+O9jnPkb6Dz+wi04/AACAPw6A/j0oC8c9eQM5PjPAlbwLQRW+WAGXvrxFt777/3+/AACAPzaLhT/8/3+/AO+yPgIAgD8AAAAAb4atPsIjsj7JX7g+8nrGPoZ83j69XP8+Fa4XP0bRQD8AAIA/AACAP4kimT5dPAE8QDHFPrOem73Qg9O9OHpjv9wbC7+UMY4+AAAAAAQgiz///38/JHYrPgEAgL8AAAAAOnalPssvpz7c6Kw+KHO3PofYxT4DXts+9NL/Pi0wHz+mpFE/AACAPxpPpj76i/S8/PfRPimgOb0IkeK+XUcEvzygib6vntk+AACAP+Cdgz/yCYW9BnMcP/3/fz8AAAAAk0iiPmAgpD7e9Kg+cjixPscRwD4gs9Y+w5L6PgpcGD9g1j4/AACAP+5nTb1DmYO8F+XHPpoTwTyoceS7xpwivwDiLL7fww8/AACAP1a7lj/9/38/kIbkPgIAgL8AAAAATKW6PrDMvD7t6sM+3ebPPiAz4T7mvfg+aqAPP+5wLD/nGGM/AACAP4pNtD3fumg9UrrWPg7mdD189Pq+sNu6PsBz6z3+NBC/AACAP286kT8AAGA0MNlKPlzLf78AAIA/eAClPoWCpz5Po60+KgW3Pg+exT4gSNs+bpn9PttfHj81ml8/AACAP2tQjT6/8Tc7HU2sPoQZLj3JiQW/BACAP9Bg5b0AAIC/AAAAAFlTjz8AACCygOscPPz/fz8AAIA/ErmdPp2Dnz7T2KM+r66rPkOTtj5H4Mg+pXPnPnlIDD9tkzk/AACAP96UTz/mLsG9sdSVPrIDbT1HOky/5OjZPchnDr5Dxrc+AACAP4cajT8AAAAArmUhPwAAgD8AAAAA5EC0PvBMtj5Kvbw+05DIPn7C2z5K1vk+cf4VP++PRz8AAIA/AACAP5EOOT5cEH08MwWxPhbWbDzs2ti+AACAP0RJn74BAIC/AAAAAN5cjj+Wr1g/gB3EvAAAgL8AAAAAZsifPoaKoz4P1qo+AEC1PqYHxz6rUuI+4B8EP/duHj8uAFM/AACAPzUmgj58OuE8ZJvhPpZUG71fTGS+tQCAv3zdAL/PdO0+AACAP4gCkD8AAPA0jvi/PowUKD8AAAAAMqSWPgIvmT4dvqA+9z6tPr70vz7Phdg+M5j9Pvp7HT+K+E8/AACAP36Wtz7KrxY9rLOIPvsrDD31eBC/AgCAvwCYt7rs4DU/AACAP45Agj/8/3+/6KZaPgMAgD8AAAAA8zykPmyLpD4tsag+bYGxPoofwT5Tfts+YUQCP4sHKz9d2Xk/AACAPyfmID8UtSo9WL6yPhbHIj3Rk0y/fp6KvwCHWzuUWj8/AACAP/JnkD8AAAAAPPSkPvf/f78AAAAAWm+vPumtsT579rg+QHTDPueV0z4q8u4+CpYOP4kBNj853nI/AACAPxw5VT1znsy855lOPljmAz5joUy/AN6UuUJaGj/P8eE+AACAP9r/kD8AgHg3InnoPsgjAb4AAIA/TIuYPslGmj4CrZ8+ymipPqjTuD50e9A+1Wb1Pu9JGT/N+04/AACAPwGz9D0qJBA7YmGyPk0y6j1QvlW/AIqMubaHxz7pWmE+AAAAAGZJkT8AXpQ3kIRjPihW+r4AAIA/ro6SPgY1lj7Xmpw+8jinPt1wtj72V80+NBf0PtxuHz+jp2w/AACAP52CQT59K1E8gniwPvib0LzqhZM8/GRav+jk+r7YmbM+AAAAAAvKkj8AAIA/GChPPi91lb8AAAAA5m+pPjhRqj4e4q0+gVK1PozSwT6SfNU+Qsj6Pkv5HT8l41g/AACAPz3UqD7XTJw7O/CoPoWESjwJlCa+/v9/v5SsCb9h9g4/AAAAAOGdjT8AAAAAwNkPvX3f5b0AAAAAfXKZPiyBmT4LXZ4+wcCnPkJltz6BJ9E+/Xv5PqX3Gz/6Bl0/AACAP1P/ND76hca9l2iyPhqmxr1W+uW+tP9/P4DPwb0BAIC/AAAAAPxQij8OAIA/4DbpPdT/f78AAAAAOgSpPoFLqT5mvK4+uaG6Pl3UzT6C3e4+NPMRP+pBOj/G030/AACAP4kP2z49Z9U8h9mxPihQ0bvmhf6+//9/vzi+V768Rxs/AACAP7D2jD9ovny+0GSbPfz/fz8AAAAAZyCfPoHeoD7fCqY+506wPqfEwT7B0eA+t5ILPxjWND8AAIA/AACAP8N1rT58Jrc9Yt9GPkyvc711NDK+PwOAv1g1FL/Pti0+AACAP5A7hT8CdOe+IFbBPRUAgD8AAAAARXqbPkk+nT4Xv6I+yqqsPo9hvD7PfdQ+8R76PpI8HD88iVY/AACAPyg61D37/z+9yTrFPny1AD1LRAS/s0FjP4ATkr0AAIC/AAAAABJwgj8BAIC/6l2TPsWmWT8AAIA/ElmdPiBfnz6Miqc+BJi0PsEUyD4vdOI+lbQFPw66JD8SUVo/AACAP6Lj8jsk34E9eqBPPnHxlj28BB2/0K+3PHAidz4AAIC/AAAAAGQekT8AAAAAfOPFPuEMeb8AAIA//hWdPpISnz51Pqc+WC+0PmFQxz53XuA+nDYEP8JEJD+oQFw/AACAPw0TEj4U+++9D8b/PtaqZb3mFC6/AFVCvih+BD5L1kg/AACAP2yGlz/eHKU/sLQLPwAAgL8AAAAAMFuSPsVqlD6nlZo+vkKlPrd3tj44XNE+ABH4PgdWHD8pgFE/AACAP26oAT5T2Es9tThpPha1ujqvA3u9gcjqPoCEy74LVra+AAAAAKyVjj/PA46+ZLmmvvDTtL4AAIA/E8SkPp2kqD4o7q4+6AK5PlECyT57g+M+KU0FPwolJj9As2M/AACAP3xWZz4cOg49BlabPlwiHb2+a6U9JQCAP8Bxwr77/3+/AAAAAGwohD/COhw/UGtFvgEAgL8AAIA/w4mxPsejsD4ENLQ+KOO8Pkveyz4mvOU+gO4JP7XJLz8AAIA/AACAPzNUazuqifC8cdioPir+Tb12GQi/dZQ7v74vuT63FVU/AACAP/9/kD8AAAAAmFsbPgMAgD8AAAAAeQCpPs41rj4I87U+tCHBPgHy2D5g/PY+L0sPP/yHLT+CPGI/AACAP6er0z2//no9EnWNPkDzSz1YsMa+FACAP4BrVT38/3+/AAAAAN3ykD8AAICzsE8kPgcAgL8AAIA/uGGoPjf8pz7uN6s+sJO1PuoyxT4sCdw+tzoAP668Hz+syV4/AACAP3g8Pj5djZI8iJ1+PozJ67zSm8U8AQCAvzxWDL+9Ec0+AAAAAPWUjz8AAAAAwleXPgMAgD8AAAAA6jajPmwRpT5V2Ko+aUK1Pl3BxT7CEN8+SNwCP2qaJD9BxF0/AACAP8hF1D2vTDy9It/rPikzwDzzFeK+4+wWP2BhGb2d9Ha/AACAP/dkcz+qDzm/k9wxPyuzxj8AAIA/2r2iPhyrpD7fFKo+Sh6zPkN3wT4sH9g+VV/9Pju2Fj8+k0E/AACAP22QsD7tZYI4VciHPqHMAD3mSLi+0rgmvtBa774w6zM+AAAAAFDLjj8AwHCz6N6Nvjwkpb4AAIA/wm+WPsiOlj69K5o+7gqiPp5krj6QTcA+clPbPhXfBj+OLDA/AACAP5r2K717sA++qm/gPgkBnbwQ6xe/+/9/P2SQNT4BAIC/AAAAAFE3fD+siJS+9VRcP+CkBkAAAIA/TLSfPkjWoT5T9qc+ioe1PoXdxz5RvOM+jY0KPxNTMz/jiHQ/AACAP1Td3D3t7GM8GbgEP7yLfb1VXJ6+C4yJv1A6mb4b7Sg/AACAP4gxjj8AAAAAgNoxPW99FL8AAIA/vCiePjIGoj6gwak+t1C1PlIMxz69gOE+t9kEP4PEJj8KHGY/AACAPzR3ED4hFJ69mFmuPmZdKj2/pR+/PL7BvborkD7HBiM/AACAP6oViT/i/38/ZqCRPhgAgL8AAIA/ROmbPuKhnT56B6M+W8WsPj+HvD4iJtg+Pl4BPy66Ij8Zcl8/AACAP2OKI7wmwBC+jPDWPjp9kTxbtlG/AACAs0xLVT8AAIA/AAAAABlEhT/7/3+/7+EtPwQAgD8AAAAAVXaiPr3Fpj5rvrA+Q6bAPtqI2D6Nw/g+jcwTP61HOj+3gnw/AACAP4+z3j4JZaK8zZWRPjbzhz0R5CC/1MZzv4Cg5LylAoA/AAAAAIH9iT/1tCK/DE5vPggAgD8AAAAA+jOiPkYsoD5IgKE+11unPtBrsj7abMU+UhvmPo7iET97UlA/AACAP+iAaT7AYpG9H3/iPs67v7woDC+/m/dHPwAHFb1pC12/AACAPwVZiD/3/38/sHnDPQgAgL8AAIA/6YWbPvThnj4wcqQ+D0KuPhUfvT5rpNI+g0TxPrcdDj/0pzw/AACAP1pNQj77FA+9sXaNPrZ1Brx3xka/ILLOvjDwND6FZx8/AAAAAIxplD/uA00/mEhJPgEAgL8AAIA/XG6HPhOyiT4IOo8+B+CYPj8JqD7jCb8++XPhPhAaDj/0c04/AACAP+9xsT4FMvS9rEzKPoAF/jwzVlO/AADAtlB3GD7YSDs/AAAAAIMgjT8IkFw+4oslPwMAgD8AAAAA9XWQPrJOkT6MepU+s2SePoL1rD5LocQ+AqjnPi6TDj/CCFE/AACAP53v9j1Jo+E8thudPrSFUr3inJu9/P9/P2i9IL+ZDzG/AAAAAPVfiz+UYuq+8B5aPrGClz8AAAAAE22ZPlwTnT4TWaU+fcOyPt9exz59hOU+Us4HP3SvJz/naV4/AACAPy1OAj4qVTc9J01pPnhh1j2r6BS/MRWAPwQmTD63gLq/AACAP/zZkD8AAIe3uKjjPdFpgL8AAAAAVmWdPjcsnj4dJKI+PGSrPp0OvD7Fl9o+cY0BP2OtLj8AAIA/AACAP6VJMj6SXNk7QUtQPjTHCD1DbmC+5NnjvmABzr7x8rI+AACAP490kT8AALgzAIZRPG1xnL4AAIA/eOuWPrm5mD5vGp4+9a2nPqWFtz7y29I+6EX6PnDeIT+qG3Q/AACAP97OGj0qofi9vNuqPpLlaT3AiSu/+v9/Pw+xDz+RTSC+AAAAALtEkT8AAAAAoHe3PXXL+D0AAIA/PPWoPlMnqT5Juaw+bJG2PuIjyD7cN+Y+48IJPwMOKT+QWmI/AACAP9vRDz42GwA9AESfPcwWED0/WmW+/f9/PwDTkb4AAIC/AAAAAHVsij85b5S+oGi9vQ/tL70AAIA/xRGoPp52qj7ebbA+Kgy7PvSsyz5ajOQ+yW4FP1XhIT+QiVs/AACAP5T8gz7Nbzu92nzdPsgpWr2e+/C+8ASAPwhTy74eAIC/AAAAAN/DdT8I+38/KhOmPsMDgL8AAIA/sgCTPrI3lj5UC50+okCoPkIYuD5dRtE+ken4Po1OFz/cDUE/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLMksYhpSMAUOUdJRSlC4="
66
- },
67
  "_last_episode_starts": {
68
  ":type:": "<class 'numpy.ndarray'>",
69
  ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x1437d79a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1437d7a30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1437d7ac0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1437d7b50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x1437d7be0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x1437d7c70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x1437d7d00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1437d7d90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x1437d7e20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1437d7eb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1437d7f40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x1437e8040>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x1437e1ac0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
  "observation_space": {
25
  ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
  "dtype": "float32",
28
  "_shape": [
29
  24
 
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
40
  "dtype": "float32",
41
  "_shape": [
42
  4
 
60
  ":type:": "<class 'function'>",
61
  ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
62
  },
63
+ "_last_obs": null,
 
 
 
64
  "_last_episode_starts": {
65
  ":type:": "<class 'numpy.ndarray'>",
66
  ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 239.93290389429603, "std_reward": 114.23728262623825, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T18:15:31.268668"}
 
1
+ {"mean_reward": 200.1335456501336, "std_reward": 145.8333287462424, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T18:17:51.355739"}