File size: 2,216 Bytes
2647bbf
 
 
 
 
 
3ad52de
 
2647bbf
 
 
 
d205378
 
2647bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c331b0
3ad52de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: mit
datasets:
- squad
- eli5
- sentence-transformers/embedding-training-data
- KennethTM/squad_pairs_danish
- KennethTM/eli5_question_answer_danish
language:
- da
---

*New version available, trained on more data and otherwise identical [KennethTM/MiniLM-L6-danish-reranker-v2](https://huggingface.co/KennethTM/MiniLM-L6-danish-reranker-v2)*

# MiniLM-L6-danish-reranker

This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It takes two sentences as input and outputs a relevance score. Therefore, the model can be used for information retrieval, e.g. given a query and candidate matches, rank the candidates by their relevance. 

The maximum sequence length is 512 tokens (for both passages).

The model was not pre-trained from scratch but adapted from the English version of [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) with a [Danish tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish).

Trained on ELI5 and SQUAD data machine translated from English to Danish.

## Usage with Transformers

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained('KennethTM/MiniLM-L6-danish-reranker')
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-reranker')
features = tokenizer(['Kører der cykler på vejen?', 'Kører der cykler på vejen?'], ['En panda løber på vejen.', 'En mand kører hurtigt forbi på cykel.'],  padding=True, truncation=True, return_tensors="pt")

model.eval()
with torch.no_grad():
    scores = model(**features).logits
    print(scores)
```

## Usage with SentenceTransformers

The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
```python
from sentence_transformers import CrossEncoder
model = CrossEncoder('KennethTM/MiniLM-L6-danish-reranker', max_length=512)
scores = model.predict([('Kører der cykler på vejen?', 'En panda løber på vejen.'), ('Kører der cykler på vejen?', 'En mand kører hurtigt forbi på cykel.')])
```