--- license: mit datasets: - squad - eli5 - sentence-transformers/embedding-training-data - KennethTM/squad_pairs_danish - KennethTM/eli5_question_answer_danish language: - da --- *New version available, trained on more data and otherwise identical [KennethTM/MiniLM-L6-danish-reranker-v2](https://huggingface.co/KennethTM/MiniLM-L6-danish-reranker-v2)* # MiniLM-L6-danish-reranker This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It takes two sentences as input and outputs a relevance score. Therefore, the model can be used for information retrieval, e.g. given a query and candidate matches, rank the candidates by their relevance. The maximum sequence length is 512 tokens (for both passages). The model was not pre-trained from scratch but adapted from the English version of [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) with a [Danish tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish). Trained on ELI5 and SQUAD data machine translated from English to Danish. ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('KennethTM/MiniLM-L6-danish-reranker') tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-reranker') features = tokenizer(['Kører der cykler på vejen?', 'Kører der cykler på vejen?'], ['En panda løber på vejen.', 'En mand kører hurtigt forbi på cykel.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits print(scores) ``` ## Usage with SentenceTransformers The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('KennethTM/MiniLM-L6-danish-reranker', max_length=512) scores = model.predict([('Kører der cykler på vejen?', 'En panda løber på vejen.'), ('Kører der cykler på vejen?', 'En mand kører hurtigt forbi på cykel.')]) ```