init update the model.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.69 +/- 17.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c2c891b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c2c89240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c2c892d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c2c89360>", "_build": "<function ActorCriticPolicy._build at 0x7fd1c2c893f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd1c2c89480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c2c89510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c2c895a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c2c89630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c2c896c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c2c89750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c2c897e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd1c2c22b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720710434302452224, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCK/CAMDwH+MAWyUS9mMAXSUR0CvMIPvBrN4dX2UKGgGR0BitXNA1NxmaAdN6ANoCEdArzGY9q1w53V9lChoBkdAYnFp7CzkZWgHTegDaAhHQK8x0JJoTPB1fZQoaAZHQGDpmQjlgc9oB03oA2gIR0CvMkE3sHB2dX2UKGgGR0BisVbor4FiaAdN6ANoCEdArzUoSrYGuHV9lChoBkdAQf+EK3NLUWgHS9poCEdArzb3evZAZHV9lChoBkdAaA2ZvUBnz2gHTegDaAhHQK852W9lEql1fZQoaAZHQGJid9Dx9XtoB03oA2gIR0CvOmmyon8bdX2UKGgGR0BlVo9Pk7wKaAdN6ANoCEdArzvg8p1A7nV9lChoBkdAXcKeK8+Ro2gHTegDaAhHQK89ABOHnEF1fZQoaAZHQGSctxVAAyVoB03oA2gIR0CvTaanR9gGdX2UKGgGR0BmaKhHskY5aAdN6ANoCEdAr04rPdEb53V9lChoBkdAXr/zz3AVPGgHTegDaAhHQK9RSa4MF2V1fZQoaAZHQGNVjlYEGJNoB03oA2gIR0CvUfh7u2JBdX2UKGgGR0BmzSo86mwaaAdN6ANoCEdAr1J8m+j/MnV9lChoBkdAXfPKB/Zuh2gHTegDaAhHQK9TNXLeQ+51fZQoaAZHQGE/boKUmlZoB03oA2gIR0CvU6acqe9SdX2UKGgGR0BnSDIV/MGHaAdN6ANoCEdAr1XitxMnJHV9lChoBkdAZKsOavzOHGgHTegDaAhHQK9W9KA8Swp1fZQoaAZHQGfKT6rNnoRoB03oA2gIR0CvV1EHMUypdX2UKGgGR0BNwSIP9UCJaAdL3mgIR0CvWMzAnDzidX2UKGgGR0BjeEK/mDDkaAdN6ANoCEdAr1pn003wTnV9lChoBkdAZXzOeJ53T2gHTegDaAhHQK9cRhuwX691fZQoaAZHQEhXUrkKeCloB00MAWgIR0CvXKH1FpfydX2UKGgGR0BRaZpWV/tqaAdL5GgIR0CvXp+tKZlWdX2UKGgGR0Bj4JZntfG/aAdN6ANoCEdAr17fjQzDXXV9lChoBkdAYuv/BFd9lWgHTegDaAhHQK9fk0Nz8xd1fZQoaAZHQF1sADaGpMpoB03oA2gIR0CvYUycLBsRdX2UKGgGR0BmPvUaya/iaAdN6ANoCEdAr2KtcfNiY3V9lChoBkdAK12DHwPRRmgHS+ZoCEdAr2XOscQyynV9lChoBkdAZRJXOnl4kmgHTegDaAhHQK9pPpLVWjp1fZQoaAZHQGQZvLxI8QtoB03oA2gIR0CvckNDD0lJdX2UKGgGR0BTa2L1mJ3xaAdL02gIR0CvdEV/c32mdX2UKGgGR0BgKKXKKYReaAdN6ANoCEdAr3Urgn+hoXV9lChoBkdAYq+nPVurImgHTegDaAhHQK91ySntOVR1fZQoaAZHQGK/3OW0JF9oB03oA2gIR0Cvdj5CngpCdX2UKGgGR0BgsnovBacJaAdN6ANoCEdAr3c5cu8K5XV9lChoBkdAYpsZYPoV22gHTegDaAhHQK96+jgQ6IZ1fZQoaAZHQGLdCm/FirloB03oA2gIR0Cve3uLJjlQdX2UKGgGR0BladRiw0O3aAdN6ANoCEdAr39Ws/6frnV9lChoBkdAYGr1OCXhO2gHTegDaAhHQK+BTAtWdVh1fZQoaAZHQF4fBOpKjBVoB03oA2gIR0CvgazHjp9rdX2UKGgGR0Bkit65Xlr/aAdN6ANoCEdAr4PHY+Sr53V9lChoBkdAYCAfFrEcbWgHTegDaAhHQK+EjEHdGiJ1fZQoaAZHQGabUL2HtWxoB03oA2gIR0Cvhe3yiEg4dX2UKGgGR0Blus4JeE7GaAdN6ANoCEdAr4b/p8neBXV9lChoBkdAZ8rtrsSkCWgHTegDaAhHQK+NK2tuDSR1fZQoaAZHQGaXbe2uxKRoB03oA2gIR0CvjaLnLaEjdX2UKGgGR0BlHyVhTfixaAdN6ANoCEdAr5lrjFQ2uXV9lChoBkdAZH3gQYk3TGgHTegDaAhHQK+aPzxwyZd1fZQoaAZHQGTSjPfKp1loB03oA2gIR0CvmtQoTfzjdX2UKGgGR0Bk9Gg+QlruaAdN6ANoCEdAr5tEtPHktHV9lChoBkdAaCWF3Y+SsGgHTegDaAhHQK+cRX3g1m91fZQoaAZHQBlYJVsDW9VoB0vxaAhHQK+fSu7pV0d1fZQoaAZHQGd1edsi0OVoB03oA2gIR0Cvn14sVclgdX2UKGgGR0BgbEtwrDqGaAdN6ANoCEdAr5+9QbdadXV9lChoBkdAG8ZqVQhwEWgHS+1oCEdAr6D1v0h/zHV9lChoBkdAYZHjPOY6XGgHTegDaAhHQK+i1GH58Bx1fZQoaAZHQGA5GhmGucNoB03oA2gIR0CvpK6UJOWTdX2UKGgGR0BhE1aW5YozaAdN6ANoCEdAr6UJXhfjTHV9lChoBkdATi+5nUUfxWgHS9RoCEdAr6UW3jMmnnV9lChoBkdAYHbCl7+kxmgHTegDaAhHQK+m/CfpUxV1fZQoaAZHQGF/BCUornVoB03oA2gIR0Cvp7sBp5/tdX2UKGgGR0BmZhlcyFfzaAdN6ANoCEdAr6kMm4RVZXV9lChoBkdAYZ8h/RVp9WgHTegDaAhHQK+qGb2Dg651fZQoaAZHQGC+HtF8XvZoB03oA2gIR0Cvscd0JWvKdX2UKGgGR0Boj2f/WDpUaAdN6ANoCEdAr7JKRlpXZHV9lChoBkdAZA4IQe3hGmgHTegDaAhHQK+95np0OmR1fZQoaAZHQGUipk5IYm9oB03oA2gIR0CvvpOZCv5hdX2UKGgGR0Bnt0Syt3fRaAdN6ANoCEdAr8BAH9m6G3V9lChoBkdAZQNN/OMVDmgHTegDaAhHQK/ECU7jkuJ1fZQoaAZHQGZIvkRzzVdoB03oA2gIR0CvxCZM+NcXdX2UKGgGR0Bliva37UG3aAdN6ANoCEdAr8aQ1ivxIHV9lChoBkdAZtH5Jsfq5mgHTegDaAhHQK/JJ0MgEEF1fZQoaAZHQGLbxE4Nqg1oB03oA2gIR0CvyxM67ulXdX2UKGgGR0BnU/J3gUDdaAdN6ANoCEdAr8t3nGKhtnV9lChoBkdAYEP4Uvf0mWgHTegDaAhHQK/LhfHggox1fZQoaAZHQGNG5s0pEx9oB03oA2gIR0CvzYk7wKBvdX2UKGgGR0Bn3v2bobGWaAdN6ANoCEdAr85RAMUh3nV9lChoBkdAZfUH+IdlumgHTegDaAhHQK/PuPnSv1V1fZQoaAZHQGTQa/qPfbdoB03oA2gIR0Cv0N5SvTw2dX2UKGgGR0Bmy8078vVWaAdN6ANoCEdAr9f7iADq4nV9lChoBkdAXn+ZNO/L1WgHTegDaAhHQK/YhWd3B551fZQoaAZHQGF8fZmI0qJoB03oA2gIR0Cv5VkLH+6zdX2UKGgGR0BgiUauOjqOaAdN6ANoCEdAr+YEnCwbEXV9lChoBkdAYdQoR7JGOWgHTegDaAhHQK/ntlXA/LV1fZQoaAZHQGIzoUJv5xloB03oA2gIR0Cv6ysKsuFpdX2UKGgGR0BgMVwDNhVmaAdN6ANoCEdAr+s/wd8zAXV9lChoBkdAZmOoWHk92WgHTegDaAhHQK/s5y7PIGR1fZQoaAZHQGLJt7rs0HhoB03oA2gIR0Cv7tJjMFEBdX2UKGgGR0BhQXLX+VC5aAdN6ANoCEdAr/DBcHGCI3V9lChoBkdAZAQc+aBqbmgHTegDaAhHQK/xH9xZMcp1fZQoaAZHQGhibVJ+UhVoB03oA2gIR0Cv8SzX8O0+dX2UKGgGR0Bm7HmNipeeaAdN6ANoCEdAr/MqwKSgXnV9lChoBkdAYqWJZ4fOlmgHTegDaAhHQK/z9w71Zkl1fZQoaAZHQGg17mdRR/FoB03oA2gIR0Cv9ZcqvvBrdX2UKGgGR0BlttXDFZPmaAdN6ANoCEdAr/cmXPZ7HHV9lChoBkdAUZroRqXWv2gHTQABaAhHQK/7bXrdFfB1fZQoaAZHQGfAHZTQ3P1oB03oA2gIR0Cv/p6/h2nsdX2UKGgGR0BgVNyFPBSDaAdN6ANoCEdAr/8uD15B1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61ea4680f7729660c36a919ef3d1929212320ce9e328ad3fbcbcfb3923c6cd0c
|
3 |
+
size 147316
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c2c891b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c2c89240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c2c892d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c2c89360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd1c2c893f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd1c2c89480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c2c89510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c2c895a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd1c2c89630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c2c896c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c2c89750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c2c897e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd1c2c22b00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1720710434302452224,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.015808000000000044,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCK/CAMDwH+MAWyUS9mMAXSUR0CvMIPvBrN4dX2UKGgGR0BitXNA1NxmaAdN6ANoCEdArzGY9q1w53V9lChoBkdAYnFp7CzkZWgHTegDaAhHQK8x0JJoTPB1fZQoaAZHQGDpmQjlgc9oB03oA2gIR0CvMkE3sHB2dX2UKGgGR0BisVbor4FiaAdN6ANoCEdArzUoSrYGuHV9lChoBkdAQf+EK3NLUWgHS9poCEdArzb3evZAZHV9lChoBkdAaA2ZvUBnz2gHTegDaAhHQK852W9lEql1fZQoaAZHQGJid9Dx9XtoB03oA2gIR0CvOmmyon8bdX2UKGgGR0BlVo9Pk7wKaAdN6ANoCEdArzvg8p1A7nV9lChoBkdAXcKeK8+Ro2gHTegDaAhHQK89ABOHnEF1fZQoaAZHQGSctxVAAyVoB03oA2gIR0CvTaanR9gGdX2UKGgGR0BmaKhHskY5aAdN6ANoCEdAr04rPdEb53V9lChoBkdAXr/zz3AVPGgHTegDaAhHQK9RSa4MF2V1fZQoaAZHQGNVjlYEGJNoB03oA2gIR0CvUfh7u2JBdX2UKGgGR0BmzSo86mwaaAdN6ANoCEdAr1J8m+j/MnV9lChoBkdAXfPKB/Zuh2gHTegDaAhHQK9TNXLeQ+51fZQoaAZHQGE/boKUmlZoB03oA2gIR0CvU6acqe9SdX2UKGgGR0BnSDIV/MGHaAdN6ANoCEdAr1XitxMnJHV9lChoBkdAZKsOavzOHGgHTegDaAhHQK9W9KA8Swp1fZQoaAZHQGfKT6rNnoRoB03oA2gIR0CvV1EHMUypdX2UKGgGR0BNwSIP9UCJaAdL3mgIR0CvWMzAnDzidX2UKGgGR0BjeEK/mDDkaAdN6ANoCEdAr1pn003wTnV9lChoBkdAZXzOeJ53T2gHTegDaAhHQK9cRhuwX691fZQoaAZHQEhXUrkKeCloB00MAWgIR0CvXKH1FpfydX2UKGgGR0BRaZpWV/tqaAdL5GgIR0CvXp+tKZlWdX2UKGgGR0Bj4JZntfG/aAdN6ANoCEdAr17fjQzDXXV9lChoBkdAYuv/BFd9lWgHTegDaAhHQK9fk0Nz8xd1fZQoaAZHQF1sADaGpMpoB03oA2gIR0CvYUycLBsRdX2UKGgGR0BmPvUaya/iaAdN6ANoCEdAr2KtcfNiY3V9lChoBkdAK12DHwPRRmgHS+ZoCEdAr2XOscQyynV9lChoBkdAZRJXOnl4kmgHTegDaAhHQK9pPpLVWjp1fZQoaAZHQGQZvLxI8QtoB03oA2gIR0CvckNDD0lJdX2UKGgGR0BTa2L1mJ3xaAdL02gIR0CvdEV/c32mdX2UKGgGR0BgKKXKKYReaAdN6ANoCEdAr3Urgn+hoXV9lChoBkdAYq+nPVurImgHTegDaAhHQK91ySntOVR1fZQoaAZHQGK/3OW0JF9oB03oA2gIR0Cvdj5CngpCdX2UKGgGR0BgsnovBacJaAdN6ANoCEdAr3c5cu8K5XV9lChoBkdAYpsZYPoV22gHTegDaAhHQK96+jgQ6IZ1fZQoaAZHQGLdCm/FirloB03oA2gIR0Cve3uLJjlQdX2UKGgGR0BladRiw0O3aAdN6ANoCEdAr39Ws/6frnV9lChoBkdAYGr1OCXhO2gHTegDaAhHQK+BTAtWdVh1fZQoaAZHQF4fBOpKjBVoB03oA2gIR0CvgazHjp9rdX2UKGgGR0Bkit65Xlr/aAdN6ANoCEdAr4PHY+Sr53V9lChoBkdAYCAfFrEcbWgHTegDaAhHQK+EjEHdGiJ1fZQoaAZHQGabUL2HtWxoB03oA2gIR0Cvhe3yiEg4dX2UKGgGR0Blus4JeE7GaAdN6ANoCEdAr4b/p8neBXV9lChoBkdAZ8rtrsSkCWgHTegDaAhHQK+NK2tuDSR1fZQoaAZHQGaXbe2uxKRoB03oA2gIR0CvjaLnLaEjdX2UKGgGR0BlHyVhTfixaAdN6ANoCEdAr5lrjFQ2uXV9lChoBkdAZH3gQYk3TGgHTegDaAhHQK+aPzxwyZd1fZQoaAZHQGTSjPfKp1loB03oA2gIR0CvmtQoTfzjdX2UKGgGR0Bk9Gg+QlruaAdN6ANoCEdAr5tEtPHktHV9lChoBkdAaCWF3Y+SsGgHTegDaAhHQK+cRX3g1m91fZQoaAZHQBlYJVsDW9VoB0vxaAhHQK+fSu7pV0d1fZQoaAZHQGd1edsi0OVoB03oA2gIR0Cvn14sVclgdX2UKGgGR0BgbEtwrDqGaAdN6ANoCEdAr5+9QbdadXV9lChoBkdAG8ZqVQhwEWgHS+1oCEdAr6D1v0h/zHV9lChoBkdAYZHjPOY6XGgHTegDaAhHQK+i1GH58Bx1fZQoaAZHQGA5GhmGucNoB03oA2gIR0CvpK6UJOWTdX2UKGgGR0BhE1aW5YozaAdN6ANoCEdAr6UJXhfjTHV9lChoBkdATi+5nUUfxWgHS9RoCEdAr6UW3jMmnnV9lChoBkdAYHbCl7+kxmgHTegDaAhHQK+m/CfpUxV1fZQoaAZHQGF/BCUornVoB03oA2gIR0Cvp7sBp5/tdX2UKGgGR0BmZhlcyFfzaAdN6ANoCEdAr6kMm4RVZXV9lChoBkdAYZ8h/RVp9WgHTegDaAhHQK+qGb2Dg651fZQoaAZHQGC+HtF8XvZoB03oA2gIR0Cvscd0JWvKdX2UKGgGR0Boj2f/WDpUaAdN6ANoCEdAr7JKRlpXZHV9lChoBkdAZA4IQe3hGmgHTegDaAhHQK+95np0OmR1fZQoaAZHQGUipk5IYm9oB03oA2gIR0CvvpOZCv5hdX2UKGgGR0Bnt0Syt3fRaAdN6ANoCEdAr8BAH9m6G3V9lChoBkdAZQNN/OMVDmgHTegDaAhHQK/ECU7jkuJ1fZQoaAZHQGZIvkRzzVdoB03oA2gIR0CvxCZM+NcXdX2UKGgGR0Bliva37UG3aAdN6ANoCEdAr8aQ1ivxIHV9lChoBkdAZtH5Jsfq5mgHTegDaAhHQK/JJ0MgEEF1fZQoaAZHQGLbxE4Nqg1oB03oA2gIR0CvyxM67ulXdX2UKGgGR0BnU/J3gUDdaAdN6ANoCEdAr8t3nGKhtnV9lChoBkdAYEP4Uvf0mWgHTegDaAhHQK/LhfHggox1fZQoaAZHQGNG5s0pEx9oB03oA2gIR0CvzYk7wKBvdX2UKGgGR0Bn3v2bobGWaAdN6ANoCEdAr85RAMUh3nV9lChoBkdAZfUH+IdlumgHTegDaAhHQK/PuPnSv1V1fZQoaAZHQGTQa/qPfbdoB03oA2gIR0Cv0N5SvTw2dX2UKGgGR0Bmy8078vVWaAdN6ANoCEdAr9f7iADq4nV9lChoBkdAXn+ZNO/L1WgHTegDaAhHQK/YhWd3B551fZQoaAZHQGF8fZmI0qJoB03oA2gIR0Cv5VkLH+6zdX2UKGgGR0BgiUauOjqOaAdN6ANoCEdAr+YEnCwbEXV9lChoBkdAYdQoR7JGOWgHTegDaAhHQK/ntlXA/LV1fZQoaAZHQGIzoUJv5xloB03oA2gIR0Cv6ysKsuFpdX2UKGgGR0BgMVwDNhVmaAdN6ANoCEdAr+s/wd8zAXV9lChoBkdAZmOoWHk92WgHTegDaAhHQK/s5y7PIGR1fZQoaAZHQGLJt7rs0HhoB03oA2gIR0Cv7tJjMFEBdX2UKGgGR0BhQXLX+VC5aAdN6ANoCEdAr/DBcHGCI3V9lChoBkdAZAQc+aBqbmgHTegDaAhHQK/xH9xZMcp1fZQoaAZHQGhibVJ+UhVoB03oA2gIR0Cv8SzX8O0+dX2UKGgGR0Bm7HmNipeeaAdN6ANoCEdAr/MqwKSgXnV9lChoBkdAYqWJZ4fOlmgHTegDaAhHQK/z9w71Zkl1fZQoaAZHQGg17mdRR/FoB03oA2gIR0Cv9ZcqvvBrdX2UKGgGR0BlttXDFZPmaAdN6ANoCEdAr/cmXPZ7HHV9lChoBkdAUZroRqXWv2gHTQABaAhHQK/7bXrdFfB1fZQoaAZHQGfAHZTQ3P1oB03oA2gIR0Cv/p6/h2nsdX2UKGgGR0BgVNyFPBSDaAdN6ANoCEdAr/8uD15B1XVlLg=="
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 248,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "4",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 1,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
}
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89f2c7f3025fa560da6e21f13a85b1521e5f14946963ebdf39acfce53e6e9a01
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb4e65745c23ecc58bec11b18646828e8cb666001da5ce4633b464612e4b9144
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (171 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.68774940000003, "std_reward": 17.557177437382016, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-11T15:35:23.547714"}
|