Kevin-Huang commited on
Commit
4eea3f3
·
verified ·
1 Parent(s): 73df0d6

init update the model.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.69 +/- 17.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c2c891b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c2c89240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c2c892d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c2c89360>", "_build": "<function ActorCriticPolicy._build at 0x7fd1c2c893f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd1c2c89480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c2c89510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c2c895a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c2c89630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c2c896c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c2c89750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c2c897e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd1c2c22b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720710434302452224, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCK/CAMDwH+MAWyUS9mMAXSUR0CvMIPvBrN4dX2UKGgGR0BitXNA1NxmaAdN6ANoCEdArzGY9q1w53V9lChoBkdAYnFp7CzkZWgHTegDaAhHQK8x0JJoTPB1fZQoaAZHQGDpmQjlgc9oB03oA2gIR0CvMkE3sHB2dX2UKGgGR0BisVbor4FiaAdN6ANoCEdArzUoSrYGuHV9lChoBkdAQf+EK3NLUWgHS9poCEdArzb3evZAZHV9lChoBkdAaA2ZvUBnz2gHTegDaAhHQK852W9lEql1fZQoaAZHQGJid9Dx9XtoB03oA2gIR0CvOmmyon8bdX2UKGgGR0BlVo9Pk7wKaAdN6ANoCEdArzvg8p1A7nV9lChoBkdAXcKeK8+Ro2gHTegDaAhHQK89ABOHnEF1fZQoaAZHQGSctxVAAyVoB03oA2gIR0CvTaanR9gGdX2UKGgGR0BmaKhHskY5aAdN6ANoCEdAr04rPdEb53V9lChoBkdAXr/zz3AVPGgHTegDaAhHQK9RSa4MF2V1fZQoaAZHQGNVjlYEGJNoB03oA2gIR0CvUfh7u2JBdX2UKGgGR0BmzSo86mwaaAdN6ANoCEdAr1J8m+j/MnV9lChoBkdAXfPKB/Zuh2gHTegDaAhHQK9TNXLeQ+51fZQoaAZHQGE/boKUmlZoB03oA2gIR0CvU6acqe9SdX2UKGgGR0BnSDIV/MGHaAdN6ANoCEdAr1XitxMnJHV9lChoBkdAZKsOavzOHGgHTegDaAhHQK9W9KA8Swp1fZQoaAZHQGfKT6rNnoRoB03oA2gIR0CvV1EHMUypdX2UKGgGR0BNwSIP9UCJaAdL3mgIR0CvWMzAnDzidX2UKGgGR0BjeEK/mDDkaAdN6ANoCEdAr1pn003wTnV9lChoBkdAZXzOeJ53T2gHTegDaAhHQK9cRhuwX691fZQoaAZHQEhXUrkKeCloB00MAWgIR0CvXKH1FpfydX2UKGgGR0BRaZpWV/tqaAdL5GgIR0CvXp+tKZlWdX2UKGgGR0Bj4JZntfG/aAdN6ANoCEdAr17fjQzDXXV9lChoBkdAYuv/BFd9lWgHTegDaAhHQK9fk0Nz8xd1fZQoaAZHQF1sADaGpMpoB03oA2gIR0CvYUycLBsRdX2UKGgGR0BmPvUaya/iaAdN6ANoCEdAr2KtcfNiY3V9lChoBkdAK12DHwPRRmgHS+ZoCEdAr2XOscQyynV9lChoBkdAZRJXOnl4kmgHTegDaAhHQK9pPpLVWjp1fZQoaAZHQGQZvLxI8QtoB03oA2gIR0CvckNDD0lJdX2UKGgGR0BTa2L1mJ3xaAdL02gIR0CvdEV/c32mdX2UKGgGR0BgKKXKKYReaAdN6ANoCEdAr3Urgn+hoXV9lChoBkdAYq+nPVurImgHTegDaAhHQK91ySntOVR1fZQoaAZHQGK/3OW0JF9oB03oA2gIR0Cvdj5CngpCdX2UKGgGR0BgsnovBacJaAdN6ANoCEdAr3c5cu8K5XV9lChoBkdAYpsZYPoV22gHTegDaAhHQK96+jgQ6IZ1fZQoaAZHQGLdCm/FirloB03oA2gIR0Cve3uLJjlQdX2UKGgGR0BladRiw0O3aAdN6ANoCEdAr39Ws/6frnV9lChoBkdAYGr1OCXhO2gHTegDaAhHQK+BTAtWdVh1fZQoaAZHQF4fBOpKjBVoB03oA2gIR0CvgazHjp9rdX2UKGgGR0Bkit65Xlr/aAdN6ANoCEdAr4PHY+Sr53V9lChoBkdAYCAfFrEcbWgHTegDaAhHQK+EjEHdGiJ1fZQoaAZHQGabUL2HtWxoB03oA2gIR0Cvhe3yiEg4dX2UKGgGR0Blus4JeE7GaAdN6ANoCEdAr4b/p8neBXV9lChoBkdAZ8rtrsSkCWgHTegDaAhHQK+NK2tuDSR1fZQoaAZHQGaXbe2uxKRoB03oA2gIR0CvjaLnLaEjdX2UKGgGR0BlHyVhTfixaAdN6ANoCEdAr5lrjFQ2uXV9lChoBkdAZH3gQYk3TGgHTegDaAhHQK+aPzxwyZd1fZQoaAZHQGTSjPfKp1loB03oA2gIR0CvmtQoTfzjdX2UKGgGR0Bk9Gg+QlruaAdN6ANoCEdAr5tEtPHktHV9lChoBkdAaCWF3Y+SsGgHTegDaAhHQK+cRX3g1m91fZQoaAZHQBlYJVsDW9VoB0vxaAhHQK+fSu7pV0d1fZQoaAZHQGd1edsi0OVoB03oA2gIR0Cvn14sVclgdX2UKGgGR0BgbEtwrDqGaAdN6ANoCEdAr5+9QbdadXV9lChoBkdAG8ZqVQhwEWgHS+1oCEdAr6D1v0h/zHV9lChoBkdAYZHjPOY6XGgHTegDaAhHQK+i1GH58Bx1fZQoaAZHQGA5GhmGucNoB03oA2gIR0CvpK6UJOWTdX2UKGgGR0BhE1aW5YozaAdN6ANoCEdAr6UJXhfjTHV9lChoBkdATi+5nUUfxWgHS9RoCEdAr6UW3jMmnnV9lChoBkdAYHbCl7+kxmgHTegDaAhHQK+m/CfpUxV1fZQoaAZHQGF/BCUornVoB03oA2gIR0Cvp7sBp5/tdX2UKGgGR0BmZhlcyFfzaAdN6ANoCEdAr6kMm4RVZXV9lChoBkdAYZ8h/RVp9WgHTegDaAhHQK+qGb2Dg651fZQoaAZHQGC+HtF8XvZoB03oA2gIR0Cvscd0JWvKdX2UKGgGR0Boj2f/WDpUaAdN6ANoCEdAr7JKRlpXZHV9lChoBkdAZA4IQe3hGmgHTegDaAhHQK+95np0OmR1fZQoaAZHQGUipk5IYm9oB03oA2gIR0CvvpOZCv5hdX2UKGgGR0Bnt0Syt3fRaAdN6ANoCEdAr8BAH9m6G3V9lChoBkdAZQNN/OMVDmgHTegDaAhHQK/ECU7jkuJ1fZQoaAZHQGZIvkRzzVdoB03oA2gIR0CvxCZM+NcXdX2UKGgGR0Bliva37UG3aAdN6ANoCEdAr8aQ1ivxIHV9lChoBkdAZtH5Jsfq5mgHTegDaAhHQK/JJ0MgEEF1fZQoaAZHQGLbxE4Nqg1oB03oA2gIR0CvyxM67ulXdX2UKGgGR0BnU/J3gUDdaAdN6ANoCEdAr8t3nGKhtnV9lChoBkdAYEP4Uvf0mWgHTegDaAhHQK/LhfHggox1fZQoaAZHQGNG5s0pEx9oB03oA2gIR0CvzYk7wKBvdX2UKGgGR0Bn3v2bobGWaAdN6ANoCEdAr85RAMUh3nV9lChoBkdAZfUH+IdlumgHTegDaAhHQK/PuPnSv1V1fZQoaAZHQGTQa/qPfbdoB03oA2gIR0Cv0N5SvTw2dX2UKGgGR0Bmy8078vVWaAdN6ANoCEdAr9f7iADq4nV9lChoBkdAXn+ZNO/L1WgHTegDaAhHQK/YhWd3B551fZQoaAZHQGF8fZmI0qJoB03oA2gIR0Cv5VkLH+6zdX2UKGgGR0BgiUauOjqOaAdN6ANoCEdAr+YEnCwbEXV9lChoBkdAYdQoR7JGOWgHTegDaAhHQK/ntlXA/LV1fZQoaAZHQGIzoUJv5xloB03oA2gIR0Cv6ysKsuFpdX2UKGgGR0BgMVwDNhVmaAdN6ANoCEdAr+s/wd8zAXV9lChoBkdAZmOoWHk92WgHTegDaAhHQK/s5y7PIGR1fZQoaAZHQGLJt7rs0HhoB03oA2gIR0Cv7tJjMFEBdX2UKGgGR0BhQXLX+VC5aAdN6ANoCEdAr/DBcHGCI3V9lChoBkdAZAQc+aBqbmgHTegDaAhHQK/xH9xZMcp1fZQoaAZHQGhibVJ+UhVoB03oA2gIR0Cv8SzX8O0+dX2UKGgGR0Bm7HmNipeeaAdN6ANoCEdAr/MqwKSgXnV9lChoBkdAYqWJZ4fOlmgHTegDaAhHQK/z9w71Zkl1fZQoaAZHQGg17mdRR/FoB03oA2gIR0Cv9ZcqvvBrdX2UKGgGR0BlttXDFZPmaAdN6ANoCEdAr/cmXPZ7HHV9lChoBkdAUZroRqXWv2gHTQABaAhHQK/7bXrdFfB1fZQoaAZHQGfAHZTQ3P1oB03oA2gIR0Cv/p6/h2nsdX2UKGgGR0BgVNyFPBSDaAdN6ANoCEdAr/8uD15B1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61ea4680f7729660c36a919ef3d1929212320ce9e328ad3fbcbcfb3923c6cd0c
3
+ size 147316
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1c2c891b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd1c2c89240>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1c2c892d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd1c2c89360>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd1c2c893f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd1c2c89480>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd1c2c89510>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd1c2c895a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd1c2c89630>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd1c2c896c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1c2c89750>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd1c2c897e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd1c2c22b00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1720710434302452224,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": null,
33
+ "_last_episode_starts": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_original_obs": null,
38
+ "_episode_num": 0,
39
+ "use_sde": false,
40
+ "sde_sample_freq": -1,
41
+ "_current_progress_remaining": -0.015808000000000044,
42
+ "_stats_window_size": 100,
43
+ "ep_info_buffer": {
44
+ ":type:": "<class 'collections.deque'>",
45
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCK/CAMDwH+MAWyUS9mMAXSUR0CvMIPvBrN4dX2UKGgGR0BitXNA1NxmaAdN6ANoCEdArzGY9q1w53V9lChoBkdAYnFp7CzkZWgHTegDaAhHQK8x0JJoTPB1fZQoaAZHQGDpmQjlgc9oB03oA2gIR0CvMkE3sHB2dX2UKGgGR0BisVbor4FiaAdN6ANoCEdArzUoSrYGuHV9lChoBkdAQf+EK3NLUWgHS9poCEdArzb3evZAZHV9lChoBkdAaA2ZvUBnz2gHTegDaAhHQK852W9lEql1fZQoaAZHQGJid9Dx9XtoB03oA2gIR0CvOmmyon8bdX2UKGgGR0BlVo9Pk7wKaAdN6ANoCEdArzvg8p1A7nV9lChoBkdAXcKeK8+Ro2gHTegDaAhHQK89ABOHnEF1fZQoaAZHQGSctxVAAyVoB03oA2gIR0CvTaanR9gGdX2UKGgGR0BmaKhHskY5aAdN6ANoCEdAr04rPdEb53V9lChoBkdAXr/zz3AVPGgHTegDaAhHQK9RSa4MF2V1fZQoaAZHQGNVjlYEGJNoB03oA2gIR0CvUfh7u2JBdX2UKGgGR0BmzSo86mwaaAdN6ANoCEdAr1J8m+j/MnV9lChoBkdAXfPKB/Zuh2gHTegDaAhHQK9TNXLeQ+51fZQoaAZHQGE/boKUmlZoB03oA2gIR0CvU6acqe9SdX2UKGgGR0BnSDIV/MGHaAdN6ANoCEdAr1XitxMnJHV9lChoBkdAZKsOavzOHGgHTegDaAhHQK9W9KA8Swp1fZQoaAZHQGfKT6rNnoRoB03oA2gIR0CvV1EHMUypdX2UKGgGR0BNwSIP9UCJaAdL3mgIR0CvWMzAnDzidX2UKGgGR0BjeEK/mDDkaAdN6ANoCEdAr1pn003wTnV9lChoBkdAZXzOeJ53T2gHTegDaAhHQK9cRhuwX691fZQoaAZHQEhXUrkKeCloB00MAWgIR0CvXKH1FpfydX2UKGgGR0BRaZpWV/tqaAdL5GgIR0CvXp+tKZlWdX2UKGgGR0Bj4JZntfG/aAdN6ANoCEdAr17fjQzDXXV9lChoBkdAYuv/BFd9lWgHTegDaAhHQK9fk0Nz8xd1fZQoaAZHQF1sADaGpMpoB03oA2gIR0CvYUycLBsRdX2UKGgGR0BmPvUaya/iaAdN6ANoCEdAr2KtcfNiY3V9lChoBkdAK12DHwPRRmgHS+ZoCEdAr2XOscQyynV9lChoBkdAZRJXOnl4kmgHTegDaAhHQK9pPpLVWjp1fZQoaAZHQGQZvLxI8QtoB03oA2gIR0CvckNDD0lJdX2UKGgGR0BTa2L1mJ3xaAdL02gIR0CvdEV/c32mdX2UKGgGR0BgKKXKKYReaAdN6ANoCEdAr3Urgn+hoXV9lChoBkdAYq+nPVurImgHTegDaAhHQK91ySntOVR1fZQoaAZHQGK/3OW0JF9oB03oA2gIR0Cvdj5CngpCdX2UKGgGR0BgsnovBacJaAdN6ANoCEdAr3c5cu8K5XV9lChoBkdAYpsZYPoV22gHTegDaAhHQK96+jgQ6IZ1fZQoaAZHQGLdCm/FirloB03oA2gIR0Cve3uLJjlQdX2UKGgGR0BladRiw0O3aAdN6ANoCEdAr39Ws/6frnV9lChoBkdAYGr1OCXhO2gHTegDaAhHQK+BTAtWdVh1fZQoaAZHQF4fBOpKjBVoB03oA2gIR0CvgazHjp9rdX2UKGgGR0Bkit65Xlr/aAdN6ANoCEdAr4PHY+Sr53V9lChoBkdAYCAfFrEcbWgHTegDaAhHQK+EjEHdGiJ1fZQoaAZHQGabUL2HtWxoB03oA2gIR0Cvhe3yiEg4dX2UKGgGR0Blus4JeE7GaAdN6ANoCEdAr4b/p8neBXV9lChoBkdAZ8rtrsSkCWgHTegDaAhHQK+NK2tuDSR1fZQoaAZHQGaXbe2uxKRoB03oA2gIR0CvjaLnLaEjdX2UKGgGR0BlHyVhTfixaAdN6ANoCEdAr5lrjFQ2uXV9lChoBkdAZH3gQYk3TGgHTegDaAhHQK+aPzxwyZd1fZQoaAZHQGTSjPfKp1loB03oA2gIR0CvmtQoTfzjdX2UKGgGR0Bk9Gg+QlruaAdN6ANoCEdAr5tEtPHktHV9lChoBkdAaCWF3Y+SsGgHTegDaAhHQK+cRX3g1m91fZQoaAZHQBlYJVsDW9VoB0vxaAhHQK+fSu7pV0d1fZQoaAZHQGd1edsi0OVoB03oA2gIR0Cvn14sVclgdX2UKGgGR0BgbEtwrDqGaAdN6ANoCEdAr5+9QbdadXV9lChoBkdAG8ZqVQhwEWgHS+1oCEdAr6D1v0h/zHV9lChoBkdAYZHjPOY6XGgHTegDaAhHQK+i1GH58Bx1fZQoaAZHQGA5GhmGucNoB03oA2gIR0CvpK6UJOWTdX2UKGgGR0BhE1aW5YozaAdN6ANoCEdAr6UJXhfjTHV9lChoBkdATi+5nUUfxWgHS9RoCEdAr6UW3jMmnnV9lChoBkdAYHbCl7+kxmgHTegDaAhHQK+m/CfpUxV1fZQoaAZHQGF/BCUornVoB03oA2gIR0Cvp7sBp5/tdX2UKGgGR0BmZhlcyFfzaAdN6ANoCEdAr6kMm4RVZXV9lChoBkdAYZ8h/RVp9WgHTegDaAhHQK+qGb2Dg651fZQoaAZHQGC+HtF8XvZoB03oA2gIR0Cvscd0JWvKdX2UKGgGR0Boj2f/WDpUaAdN6ANoCEdAr7JKRlpXZHV9lChoBkdAZA4IQe3hGmgHTegDaAhHQK+95np0OmR1fZQoaAZHQGUipk5IYm9oB03oA2gIR0CvvpOZCv5hdX2UKGgGR0Bnt0Syt3fRaAdN6ANoCEdAr8BAH9m6G3V9lChoBkdAZQNN/OMVDmgHTegDaAhHQK/ECU7jkuJ1fZQoaAZHQGZIvkRzzVdoB03oA2gIR0CvxCZM+NcXdX2UKGgGR0Bliva37UG3aAdN6ANoCEdAr8aQ1ivxIHV9lChoBkdAZtH5Jsfq5mgHTegDaAhHQK/JJ0MgEEF1fZQoaAZHQGLbxE4Nqg1oB03oA2gIR0CvyxM67ulXdX2UKGgGR0BnU/J3gUDdaAdN6ANoCEdAr8t3nGKhtnV9lChoBkdAYEP4Uvf0mWgHTegDaAhHQK/LhfHggox1fZQoaAZHQGNG5s0pEx9oB03oA2gIR0CvzYk7wKBvdX2UKGgGR0Bn3v2bobGWaAdN6ANoCEdAr85RAMUh3nV9lChoBkdAZfUH+IdlumgHTegDaAhHQK/PuPnSv1V1fZQoaAZHQGTQa/qPfbdoB03oA2gIR0Cv0N5SvTw2dX2UKGgGR0Bmy8078vVWaAdN6ANoCEdAr9f7iADq4nV9lChoBkdAXn+ZNO/L1WgHTegDaAhHQK/YhWd3B551fZQoaAZHQGF8fZmI0qJoB03oA2gIR0Cv5VkLH+6zdX2UKGgGR0BgiUauOjqOaAdN6ANoCEdAr+YEnCwbEXV9lChoBkdAYdQoR7JGOWgHTegDaAhHQK/ntlXA/LV1fZQoaAZHQGIzoUJv5xloB03oA2gIR0Cv6ysKsuFpdX2UKGgGR0BgMVwDNhVmaAdN6ANoCEdAr+s/wd8zAXV9lChoBkdAZmOoWHk92WgHTegDaAhHQK/s5y7PIGR1fZQoaAZHQGLJt7rs0HhoB03oA2gIR0Cv7tJjMFEBdX2UKGgGR0BhQXLX+VC5aAdN6ANoCEdAr/DBcHGCI3V9lChoBkdAZAQc+aBqbmgHTegDaAhHQK/xH9xZMcp1fZQoaAZHQGhibVJ+UhVoB03oA2gIR0Cv8SzX8O0+dX2UKGgGR0Bm7HmNipeeaAdN6ANoCEdAr/MqwKSgXnV9lChoBkdAYqWJZ4fOlmgHTegDaAhHQK/z9w71Zkl1fZQoaAZHQGg17mdRR/FoB03oA2gIR0Cv9ZcqvvBrdX2UKGgGR0BlttXDFZPmaAdN6ANoCEdAr/cmXPZ7HHV9lChoBkdAUZroRqXWv2gHTQABaAhHQK/7bXrdFfB1fZQoaAZHQGfAHZTQ3P1oB03oA2gIR0Cv/p6/h2nsdX2UKGgGR0BgVNyFPBSDaAdN6ANoCEdAr/8uD15B1XVlLg=="
46
+ },
47
+ "ep_success_buffer": {
48
+ ":type:": "<class 'collections.deque'>",
49
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
50
+ },
51
+ "_n_updates": 248,
52
+ "observation_space": {
53
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
54
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
55
+ "dtype": "float32",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_shape": [
59
+ 8
60
+ ],
61
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
62
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
63
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
64
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
65
+ "_np_random": null
66
+ },
67
+ "action_space": {
68
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
69
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
70
+ "n": "4",
71
+ "start": "0",
72
+ "_shape": [],
73
+ "dtype": "int64",
74
+ "_np_random": null
75
+ },
76
+ "n_envs": 1,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null,
92
+ "lr_schedule": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
+ }
96
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89f2c7f3025fa560da6e21f13a85b1521e5f14946963ebdf39acfce53e6e9a01
3
+ size 88490
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb4e65745c23ecc58bec11b18646828e8cb666001da5ce4633b464612e4b9144
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.68774940000003, "std_reward": 17.557177437382016, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-11T15:35:23.547714"}