Me1234567890
commited on
Commit
·
4d4ea94
1
Parent(s):
4b32a8d
Create KAI-1B_Demo.py
Browse files- KAI-1B_Demo.py +143 -0
KAI-1B_Demo.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mistral.cache import RotatingBufferCache
|
2 |
+
import torch
|
3 |
+
import fire
|
4 |
+
from typing import List
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from mistral.model import Transformer
|
8 |
+
from mistral.tokenizer import Tokenizer
|
9 |
+
|
10 |
+
|
11 |
+
def sample_top_p(probs: torch.Tensor, p: float):
|
12 |
+
assert 0 <= p <= 1
|
13 |
+
|
14 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
15 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
16 |
+
mask = probs_sum - probs_sort > p
|
17 |
+
probs_sort[mask] = 0.0
|
18 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
19 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
20 |
+
return torch.gather(probs_idx, -1, next_token)
|
21 |
+
|
22 |
+
|
23 |
+
def sample(logits: torch.Tensor, temperature: float, top_p: float):
|
24 |
+
if temperature > 0:
|
25 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
26 |
+
next_token = sample_top_p(probs, top_p)
|
27 |
+
else:
|
28 |
+
next_token = torch.argmax(logits, dim=-1).unsqueeze(0)
|
29 |
+
|
30 |
+
return next_token.reshape(-1)
|
31 |
+
|
32 |
+
|
33 |
+
@torch.inference_mode()
|
34 |
+
def generate(prompts: List[str], model: Transformer, tokenizer: Tokenizer, *, max_tokens: int, chunk_size: int = None, temperature: float = 0.7):
|
35 |
+
model = model.eval()
|
36 |
+
B, V = len(prompts), model.args.vocab_size
|
37 |
+
|
38 |
+
# Tokenize
|
39 |
+
encoded_prompts = [tokenizer.encode(prompt, bos=True) for prompt in prompts]
|
40 |
+
seqlens = [len(x) for x in encoded_prompts]
|
41 |
+
|
42 |
+
# Cache
|
43 |
+
cache_window = min(model.args.sliding_window, max(seqlens) + max_tokens)
|
44 |
+
cache = RotatingBufferCache(model.args.n_layers, model.args.max_batch_size, cache_window, model.args.n_kv_heads, model.args.head_dim)
|
45 |
+
cache.to(device=model.device, dtype=model.dtype)
|
46 |
+
cache.reset()
|
47 |
+
|
48 |
+
# Bookkeeping
|
49 |
+
logprobs = [[] for _ in range(B)]
|
50 |
+
last_token_prelogits = None
|
51 |
+
|
52 |
+
# One chunk if size not specified
|
53 |
+
max_prompt_len = max(seqlens)
|
54 |
+
if chunk_size is None:
|
55 |
+
chunk_size = max_prompt_len
|
56 |
+
|
57 |
+
# Encode prompt by chunks
|
58 |
+
for s in range(0, max_prompt_len, chunk_size):
|
59 |
+
prompt_chunks = [p[s:s+chunk_size] for p in encoded_prompts]
|
60 |
+
assert all(len(p) > 0 for p in prompt_chunks)
|
61 |
+
prelogits = model.forward(
|
62 |
+
torch.tensor(sum(prompt_chunks, []), device=model.device, dtype=torch.long),
|
63 |
+
seqlens=[len(p) for p in prompt_chunks],
|
64 |
+
cache=cache
|
65 |
+
)
|
66 |
+
logits = torch.log_softmax(prelogits, dim=-1)
|
67 |
+
|
68 |
+
if last_token_prelogits is not None:
|
69 |
+
# Pass > 1
|
70 |
+
last_token_logits = torch.log_softmax(last_token_prelogits, dim=-1)
|
71 |
+
for i_seq in range(B):
|
72 |
+
logprobs[i_seq].append(last_token_logits[i_seq, prompt_chunks[i_seq][0]].item())
|
73 |
+
|
74 |
+
offset = 0
|
75 |
+
for i_seq, sequence in enumerate(prompt_chunks):
|
76 |
+
logprobs[i_seq].extend([logits[offset + i, sequence[i + 1]].item() for i in range(len(sequence) - 1)])
|
77 |
+
offset += len(sequence)
|
78 |
+
|
79 |
+
last_token_prelogits = prelogits.index_select(0, torch.tensor([len(p) for p in prompt_chunks], device=prelogits.device).cumsum(dim=0) - 1)
|
80 |
+
assert last_token_prelogits.shape == (B, V)
|
81 |
+
|
82 |
+
# decode
|
83 |
+
generated_tokens = []
|
84 |
+
for i_token in range(max_tokens):
|
85 |
+
next_token = sample(last_token_prelogits, temperature=temperature, top_p=0.8)
|
86 |
+
|
87 |
+
last_token_logits = torch.log_softmax(last_token_prelogits, dim=-1)
|
88 |
+
for i in range(B):
|
89 |
+
logprobs[i].append(last_token_logits[i, next_token[i]].item())
|
90 |
+
|
91 |
+
generated_tokens.append(next_token[:, None])
|
92 |
+
last_token_prelogits = model.forward(next_token, seqlens=[1] * len(prompts), cache=cache)
|
93 |
+
assert last_token_prelogits.shape == (B, V)
|
94 |
+
|
95 |
+
generated_words = []
|
96 |
+
if generated_tokens:
|
97 |
+
generated_tokens = torch.cat(generated_tokens, 1)
|
98 |
+
for i, x in enumerate(encoded_prompts):
|
99 |
+
generated_words.append(tokenizer.decode(x + generated_tokens[i].tolist()))
|
100 |
+
|
101 |
+
return generated_words, logprobs
|
102 |
+
|
103 |
+
|
104 |
+
def interactive(model_path: str, max_tokens: int = 35, temperature: float = 0.7):
|
105 |
+
tokenizer = Tokenizer(str(Path(model_path) / "tokenizer.model"))
|
106 |
+
transformer = Transformer.from_folder(Path(model_path), max_batch_size=3)
|
107 |
+
|
108 |
+
while True:
|
109 |
+
prompt = input("Prompt: ")
|
110 |
+
res, _logprobs = generate(
|
111 |
+
[prompt],
|
112 |
+
transformer,
|
113 |
+
tokenizer,
|
114 |
+
max_tokens=max_tokens,
|
115 |
+
temperature=temperature,
|
116 |
+
)
|
117 |
+
print(res[0])
|
118 |
+
print("=====================")
|
119 |
+
|
120 |
+
def demo(model_path: str, max_tokens: int = 35, temperature: float = 0):
|
121 |
+
tokenizer = Tokenizer(str(Path(model_path) / "tokenizer.model"))
|
122 |
+
transformer = Transformer.from_folder(Path(model_path), max_batch_size=3)
|
123 |
+
|
124 |
+
res, _logprobs = generate(
|
125 |
+
[
|
126 |
+
"This is a test",
|
127 |
+
"This is another test",
|
128 |
+
"This is a third test, KAI is very good at testing. ",
|
129 |
+
],
|
130 |
+
transformer,
|
131 |
+
tokenizer,
|
132 |
+
max_tokens=max_tokens,
|
133 |
+
temperature=temperature,
|
134 |
+
)
|
135 |
+
for x in res:
|
136 |
+
print(x)
|
137 |
+
print("=====================")
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
fire.Fire({
|
141 |
+
"interactive": interactive,
|
142 |
+
"demo": demo,
|
143 |
+
})
|