--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_2500 results: [] --- # speecht5_finetuned_2500 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 3500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:---------:|:----:|:---------------:| | 0.584 | 88.8889 | 100 | 0.6268 | | 0.4839 | 177.7778 | 200 | 0.5803 | | 0.4304 | 266.6667 | 300 | 0.6589 | | 0.3976 | 355.5556 | 400 | 0.6201 | | 0.3594 | 444.4444 | 500 | 0.6107 | | 0.3468 | 533.3333 | 600 | 0.6492 | | 0.3353 | 622.2222 | 700 | 0.6362 | | 0.3194 | 711.1111 | 800 | 0.6373 | | 0.3065 | 800.0 | 900 | 0.6431 | | 0.2985 | 888.8889 | 1000 | 0.6736 | | 0.289 | 977.7778 | 1100 | 0.6697 | | 0.2833 | 1066.6667 | 1200 | 0.7000 | | 0.2798 | 1155.5556 | 1300 | 0.6875 | | 0.2775 | 1244.4444 | 1400 | 0.7149 | | 0.275 | 1333.3333 | 1500 | 0.6630 | | 0.2722 | 1422.2222 | 1600 | 0.7117 | | 0.2622 | 1511.1111 | 1700 | 0.6647 | | 0.2481 | 1600.0 | 1800 | 0.6985 | | 0.2474 | 1688.8889 | 1900 | 0.7020 | | 0.2511 | 1777.7778 | 2000 | 0.6847 | | 0.2359 | 1866.6667 | 2100 | 0.6940 | | 0.2336 | 1955.5556 | 2200 | 0.6996 | | 0.2338 | 2044.4444 | 2300 | 0.7134 | | 0.23 | 2133.3333 | 2400 | 0.7031 | | 0.2305 | 2222.2222 | 2500 | 0.6993 | | 0.2273 | 2311.1111 | 2600 | 0.7099 | | 0.2229 | 2400.0 | 2700 | 0.6907 | | 0.2151 | 2488.8889 | 2800 | 0.6985 | | 0.2232 | 2577.7778 | 2900 | 0.6972 | | 0.2234 | 2666.6667 | 3000 | 0.7091 | | 0.2165 | 2755.5556 | 3100 | 0.7103 | | 0.2143 | 2844.4444 | 3200 | 0.7168 | | 0.22 | 2933.3333 | 3300 | 0.6877 | | 0.2225 | 3022.2222 | 3400 | 0.7050 | | 0.2192 | 3111.1111 | 3500 | 0.7095 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1