--- language: - "ja" tags: - "japanese" - "masked-lm" - "modernbert" datasets: - "globis-university/aozorabunko-clean" - "wikimedia/wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # modernbert-base-japanese-char ## Model Description This is a ModernBERT model pre-trained on Japanese Wikipedia and 青空文庫 texts. NVIDIA A100-SXM4-40GB×8 took 66 hours 2 minutes for training. You can fine-tune `modernbert-base-japanese-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-char-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-char-ud-triangular), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-base-japanese-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-base-japanese-char",trust_remote_code=True) ```