KoichiYasuoka commited on
Commit
04b3693
·
1 Parent(s): f40d715

initial release

Browse files
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "ja"
4
+ tags:
5
+ - "japanese"
6
+ - "masked-lm"
7
+ - "modernbert"
8
+ datasets:
9
+ - "globis-university/aozorabunko-clean"
10
+ - "wikimedia/wikipedia"
11
+ license: "apache-2.0"
12
+ pipeline_tag: "fill-mask"
13
+ mask_token: "[MASK]"
14
+ widget:
15
+ - text: "日本に着いたら[MASK]を訪ねなさい。"
16
+ ---
17
+
18
+ # modernbert-base-japanese-wikipedia
19
+
20
+ ## Model Description
21
+
22
+ This is a ModernBERT model pre-trained on Japanese Wikipedia and 青空文庫 texts. NVIDIA A100-SXM4-40GB×8 took 56 hours 49 minutes for training. You can fine-tune `modernbert-base-japanese-wikipedia` for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
23
+
24
+ ## How to Use
25
+
26
+ ```py
27
+ from transformers import AutoTokenizer,AutoModelForMaskedLM
28
+ tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-base-japanese-wikipedia")
29
+ model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-base-japanese-wikipedia",trust_remote_code=True)
30
+ ```
31
+
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertForMaskedLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_modernbert.ModernBertConfig",
9
+ "AutoModel": "modeling_modernbert.ModernBertModel",
10
+ "AutoModelForMaskedLM": "modeling_modernbert.ModernBertForMaskedLM",
11
+ "AutoModelForSequenceClassification": "modeling_modernbert.ModernBertForSequenceClassification",
12
+ "AutoModelForTokenClassification": "modeling_modernbert.ModernBertForTokenClassification"
13
+ },
14
+ "bos_token_id": 0,
15
+ "classifier_activation": "gelu",
16
+ "classifier_bias": false,
17
+ "classifier_dropout": 0.0,
18
+ "classifier_pooling": "mean",
19
+ "cls_token_id": 0,
20
+ "decoder_bias": true,
21
+ "deterministic_flash_attn": false,
22
+ "embedding_dropout": 0.0,
23
+ "eos_token_id": 2,
24
+ "global_attn_every_n_layers": 3,
25
+ "global_rope_theta": 160000.0,
26
+ "gradient_checkpointing": false,
27
+ "hidden_activation": "gelu",
28
+ "hidden_size": 768,
29
+ "initializer_cutoff_factor": 2.0,
30
+ "initializer_range": 0.02,
31
+ "intermediate_size": 1152,
32
+ "layer_norm_eps": 1e-05,
33
+ "local_attention": 128,
34
+ "local_rope_theta": 10000.0,
35
+ "max_position_embeddings": 8192,
36
+ "mlp_bias": false,
37
+ "mlp_dropout": 0.0,
38
+ "model_type": "modernbert",
39
+ "norm_bias": false,
40
+ "norm_eps": 1e-05,
41
+ "num_attention_heads": 12,
42
+ "num_hidden_layers": 22,
43
+ "pad_token_id": 1,
44
+ "position_embedding_type": "absolute",
45
+ "reference_compile": true,
46
+ "sep_token_id": 2,
47
+ "sparse_pred_ignore_index": -100,
48
+ "sparse_prediction": false,
49
+ "tokenizer_class": "DebertaV2TokenizerFast",
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.48.0.dev0",
52
+ "vocab_size": 65000
53
+ }
configuration_modernbert.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_modernbert.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
8
+ #
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ from typing import Literal
23
+
24
+ from transformers.configuration_utils import PretrainedConfig
25
+
26
+
27
+ class ModernBertConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`ModernBertModel`]. It is used to instantiate an ModernBert
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the ModernBERT-base.
32
+ e.g. [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 50368):
39
+ Vocabulary size of the ModernBert model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`ModernBertModel`]
41
+ hidden_size (`int`, *optional*, defaults to 768):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 1152):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 22):
46
+ Number of hidden layers in the Transformer decoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 12):
48
+ Number of attention heads for each attention layer in the Transformer decoder.
49
+ hidden_activation (`str` or `function`, *optional*, defaults to `"gelu"`):
50
+ The non-linear activation function (function or string) in the decoder. Will default to `"gelu"`
51
+ if not specified.
52
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
53
+ The maximum sequence length that this model might ever be used with.
54
+ initializer_range (`float`, *optional*, defaults to 0.02):
55
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
56
+ initializer_cutoff_factor (`float`, *optional*, defaults to 2.0):
57
+ The cutoff factor for the truncated_normal_initializer for initializing all weight matrices.
58
+ norm_eps (`float`, *optional*, defaults to 1e-05):
59
+ The epsilon used by the rms normalization layers.
60
+ norm_bias (`bool`, *optional*, defaults to `False`):
61
+ Whether to use bias in the normalization layers.
62
+ pad_token_id (`int`, *optional*, defaults to 50283):
63
+ Padding token id.
64
+ eos_token_id (`int`, *optional*, defaults to 50282):
65
+ End of stream token id.
66
+ bos_token_id (`int`, *optional*, defaults to 50281):
67
+ Beginning of stream token id.
68
+ cls_token_id (`int`, *optional*, defaults to 50281):
69
+ Classification token id.
70
+ sep_token_id (`int`, *optional*, defaults to 50282):
71
+ Separation token id.
72
+ global_rope_theta (`float`, *optional*, defaults to 160000.0):
73
+ The base period of the global RoPE embeddings.
74
+ attention_bias (`bool`, *optional*, defaults to `False`):
75
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
76
+ attention_dropout (`float`, *optional*, defaults to 0.0):
77
+ The dropout ratio for the attention probabilities.
78
+ global_attn_every_n_layers (`int`, *optional*, defaults to 3):
79
+ The number of layers between global attention layers.
80
+ local_attention (`int`, *optional*, defaults to 128):
81
+ The window size for local attention.
82
+ local_rope_theta (`float`, *optional*, defaults to 10000.0):
83
+ The base period of the local RoPE embeddings.
84
+ embedding_dropout (`float`, *optional*, defaults to 0.0):
85
+ The dropout ratio for the embeddings.
86
+ mlp_bias (`bool`, *optional*, defaults to `False`):
87
+ Whether to use bias in the MLP layers.
88
+ mlp_dropout (`float`, *optional*, defaults to 0.0):
89
+ The dropout ratio for the MLP layers.
90
+ decoder_bias (`bool`, *optional*, defaults to `True`):
91
+ Whether to use bias in the decoder layers.
92
+ classifier_pooling (`str`, *optional*, defaults to `"cls"`):
93
+ The pooling method for the classifier. Should be either `"cls"` or `"mean"`. In local attention layers, the
94
+ CLS token doesn't attend to all tokens on long sequences.
95
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
96
+ The dropout ratio for the classifier.
97
+ classifier_bias (`bool`, *optional*, defaults to `False`):
98
+ Whether to use bias in the classifier.
99
+ classifier_activation (`str`, *optional*, defaults to `"gelu"`):
100
+ The activation function for the classifier.
101
+ deterministic_flash_attn (`bool`, *optional*, defaults to `False`):
102
+ Whether to use deterministic flash attention. If `False`, inference will be faster but not deterministic.
103
+ sparse_prediction (`bool`, *optional*, defaults to `False`):
104
+ Whether to use sparse prediction for the masked language model instead of returning the full dense logits.
105
+ sparse_pred_ignore_index (`int`, *optional*, defaults to -100):
106
+ The index to ignore for the sparse prediction.
107
+ reference_compile (`bool`, *optional*):
108
+ Whether to compile the layers of the model which were compiled during pretraining. If `None`, then parts of
109
+ the model will be compiled if 1) `triton` is installed, 2) the model is not on MPS, 3) the model is not
110
+ shared between devices, and 4) the model is not resized after initialization. If `True`, then the model may
111
+ be faster in some scenarios.
112
+
113
+ Examples:
114
+
115
+ ```python
116
+ >>> from transformers import ModernBertModel, ModernBertConfig
117
+
118
+ >>> # Initializing a ModernBert style configuration
119
+ >>> configuration = ModernBertConfig()
120
+
121
+ >>> # Initializing a model from the modernbert-base style configuration
122
+ >>> model = ModernBertModel(configuration)
123
+
124
+ >>> # Accessing the model configuration
125
+ >>> configuration = model.config
126
+ ```"""
127
+
128
+ model_type = "modernbert"
129
+ keys_to_ignore_at_inference = ["past_key_values"]
130
+
131
+ def __init__(
132
+ self,
133
+ vocab_size=50368,
134
+ hidden_size=768,
135
+ intermediate_size=1152,
136
+ num_hidden_layers=22,
137
+ num_attention_heads=12,
138
+ hidden_activation="gelu",
139
+ max_position_embeddings=8192,
140
+ initializer_range=0.02,
141
+ initializer_cutoff_factor=2.0,
142
+ norm_eps=1e-5,
143
+ norm_bias=False,
144
+ pad_token_id=50283,
145
+ eos_token_id=50282,
146
+ bos_token_id=50281,
147
+ cls_token_id=50281,
148
+ sep_token_id=50282,
149
+ global_rope_theta=160000.0,
150
+ attention_bias=False,
151
+ attention_dropout=0.0,
152
+ global_attn_every_n_layers=3,
153
+ local_attention=128,
154
+ local_rope_theta=10000.0,
155
+ embedding_dropout=0.0,
156
+ mlp_bias=False,
157
+ mlp_dropout=0.0,
158
+ decoder_bias=True,
159
+ classifier_pooling: Literal["cls", "mean"] = "cls",
160
+ classifier_dropout=0.0,
161
+ classifier_bias=False,
162
+ classifier_activation="gelu",
163
+ deterministic_flash_attn=False,
164
+ sparse_prediction=False,
165
+ sparse_pred_ignore_index=-100,
166
+ reference_compile=None,
167
+ **kwargs,
168
+ ):
169
+ super().__init__(
170
+ pad_token_id=pad_token_id,
171
+ bos_token_id=bos_token_id,
172
+ eos_token_id=eos_token_id,
173
+ cls_token_id=cls_token_id,
174
+ sep_token_id=sep_token_id,
175
+ **kwargs,
176
+ )
177
+ self.vocab_size = vocab_size
178
+ self.max_position_embeddings = max_position_embeddings
179
+ self.hidden_size = hidden_size
180
+ self.intermediate_size = intermediate_size
181
+ self.num_hidden_layers = num_hidden_layers
182
+ self.num_attention_heads = num_attention_heads
183
+ self.initializer_range = initializer_range
184
+ self.initializer_cutoff_factor = initializer_cutoff_factor
185
+ self.norm_eps = norm_eps
186
+ self.norm_bias = norm_bias
187
+ self.global_rope_theta = global_rope_theta
188
+ self.attention_bias = attention_bias
189
+ self.attention_dropout = attention_dropout
190
+ self.hidden_activation = hidden_activation
191
+ self.global_attn_every_n_layers = global_attn_every_n_layers
192
+ self.local_attention = local_attention
193
+ self.local_rope_theta = local_rope_theta
194
+ self.embedding_dropout = embedding_dropout
195
+ self.mlp_bias = mlp_bias
196
+ self.mlp_dropout = mlp_dropout
197
+ self.decoder_bias = decoder_bias
198
+ self.classifier_pooling = classifier_pooling
199
+ self.classifier_dropout = classifier_dropout
200
+ self.classifier_bias = classifier_bias
201
+ self.classifier_activation = classifier_activation
202
+ self.deterministic_flash_attn = deterministic_flash_attn
203
+ self.sparse_prediction = sparse_prediction
204
+ self.sparse_pred_ignore_index = sparse_pred_ignore_index
205
+ self.reference_compile = reference_compile
206
+
207
+ if self.classifier_pooling not in ["cls", "mean"]:
208
+ raise ValueError(
209
+ f'Invalid value for `classifier_pooling`, should be either "cls" or "mean", but is {self.classifier_pooling}.'
210
+ )
211
+
212
+
213
+ __all__ = ["ModernBertConfig"]
maker.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/python3
2
+ #pip3 install transformers accelerate deepspeed triton datasets fugashi unidic-lite
3
+ tgt="modernbert-base-japanese-wikipedia"
4
+ import os,json
5
+ os.system("""
6
+ if test -d transformers
7
+ then :
8
+ else git clone --depth=1 https://github.com/huggingface/transformers transformers-all
9
+ ln -s transformers-all/src/transformers transformers
10
+ fi
11
+ test -d ModernBERT-base || git clone --depth=1 https://huggingface.co/answerdotai/ModernBERT-base
12
+ test -f ModernBERT-base/configuration_modernbert.py || sed 's/^from \\.\\.\\./from transformers./' transformers/models/modernbert/configuration_modernbert.py > ModernBERT-base/configuration_modernbert.py
13
+ test -f ModernBERT-base/modeling_modernbert.py || sed -e 's/^from \\.\\.\\./from transformers./' -e 's/^from .* import is_triton_available/import importlib\\nis_triton_available = lambda: importlib.util.find_spec("triton") is not None/' transformers/models/modernbert/modeling_modernbert.py > ModernBERT-base/modeling_modernbert.py
14
+ """)
15
+ with open("ModernBERT-base/config.json","r",encoding="utf-8") as r:
16
+ d=json.load(r)
17
+ if not "auto_map" in d:
18
+ d["auto_map"]={
19
+ "AutoConfig":"configuration_modernbert.ModernBertConfig",
20
+ "AutoModel":"modeling_modernbert.ModernBertModel",
21
+ "AutoModelForMaskedLM":"modeling_modernbert.ModernBertForMaskedLM",
22
+ "AutoModelForSequenceClassification":"modeling_modernbert.ModernBertForSequenceClassification",
23
+ "AutoModelForTokenClassification":"modeling_modernbert.ModernBertForTokenClassification"
24
+ }
25
+ with open("ModernBERT-base/config.json","w",encoding="utf-8") as w:
26
+ json.dump(d,w,indent=2)
27
+ if not os.path.isfile("train.txt"):
28
+ from datasets import load_dataset
29
+ aug=lambda x:(x.replace("侠","俠").replace("倶","俱").replace("洗","冼").replace("剥","剝").replace("即","卽").replace("呑","吞").replace("呉","吳").replace("填","塡").replace("巣","巢").replace("徴","徵").replace("徳","德").replace("掲","揭").replace("撃","擊").replace("教","敎").replace("晩","晚").replace("横","橫").replace("歩","步").replace("歴","歷").replace("毎","每").replace("冷","泠").replace("渉","涉").replace("涙","淚").replace("清","淸").replace("渇","渴").replace("温","溫").replace("状","狀").replace("産","產").replace("痩","瘦").replace("禰","祢").replace("箪","簞").replace("緑","綠").replace("緒","緖").replace("縁","緣").replace("繋","繫").replace("莱","萊").replace("薫","薰").replace("虚","虛").replace("蝉","蟬").replace("説","說").replace("躯","軀").replace("郎","郞").replace("醤","醬").replace("録","錄").replace("錬","鍊").replace("間","閒").replace("頬","頰").replace("顛","顚").replace("鴎","鷗").replace("麺","麵").replace("黄","黃").replace("黒","黑").replace("叱","𠮟"))
30
+ with open("train.txt","w",encoding="utf-8") as w:
31
+ d,u,v=load_dataset("globis-university/aozorabunko-clean"),"",""
32
+ for t in d["train"]:
33
+ for s in t["text"].replace("。","。\n").replace("\u3000"," ").split("\n"):
34
+ r=aug(s)
35
+ if r!=s:
36
+ if len(r)+len(v)<10000:
37
+ v+=r
38
+ else:
39
+ print(v,file=w)
40
+ v=r
41
+ if len(s)+len(u)<10000:
42
+ u+=s
43
+ else:
44
+ print(u,file=w)
45
+ u=s
46
+ print(u,v,file=w)
47
+ d,u=load_dataset("wikimedia/wikipedia","20231101.ja"),""
48
+ for t in d["train"]:
49
+ for s in t["text"].replace("。","。\n").replace("\u3000"," ").split("\n"):
50
+ if len(s)+len(u)<10000:
51
+ u+=s
52
+ else:
53
+ print(u,file=w)
54
+ u=s
55
+ print(u,file=w)
56
+ os.system("test -s token.txt || fugashi -Owakati < train.txt > token.txt")
57
+
58
+ from transformers import DebertaV2TokenizerFast
59
+ if not os.path.isfile("tokenizer.json"):
60
+ import urllib.request
61
+ from tokenizers import Tokenizer,models,pre_tokenizers,normalizers,processors,decoders,trainers
62
+ with urllib.request.urlopen("https://www.unicode.org/wg2/iso10646/edition6/data/JapaneseCoreKanji.txt") as r:
63
+ joyo=[chr(int(t,16)) for t in r.read().decode().strip().split("\n") if not t.startswith("#")]
64
+ spt=Tokenizer(models.Unigram())
65
+ spt.pre_tokenizer=pre_tokenizers.Sequence([pre_tokenizers.Whitespace(),pre_tokenizers.Punctuation()])
66
+ spt.normalizer=normalizers.Sequence([normalizers.Nmt(),normalizers.NFKC()])
67
+ spt.post_processor=processors.TemplateProcessing(single="[CLS] $A [SEP]",pair="[CLS] $A [SEP] $B:1 [SEP]:1",special_tokens=[("[CLS]",0),("[SEP]",2)])
68
+ spt.decoder=decoders.WordPiece(prefix="",cleanup=True)
69
+ spt.train(trainer=trainers.UnigramTrainer(vocab_size=65000,max_piece_length=4,initial_alphabet=joyo,special_tokens=["[CLS]","[PAD]","[SEP]","[UNK]","[MASK]"],unk_token="[UNK]",n_sub_iterations=2),files=["token.txt"])
70
+ spt.save("tokenizer.json")
71
+ tkz=DebertaV2TokenizerFast(tokenizer_file="tokenizer.json",split_by_punct=True,do_lower_case=False,keep_accents=True,vocab_file="/dev/null")
72
+ tkz.save_pretrained(tgt)
73
+ with open("train.py","w",encoding="utf-8") as w:
74
+ print(f'#! /usr/bin/env deepspeed\ntgt="{tgt}"'+'''
75
+ from transformers import DebertaV2TokenizerFast,ModernBertForMaskedLM,AutoConfig,DataCollatorForLanguageModeling,TrainingArguments,Trainer
76
+ tkz=DebertaV2TokenizerFast.from_pretrained(tgt)
77
+ c={"trust_remote_code":True,"vocab_size":len(tkz),"tokenizer_class":type(tkz).__name__}
78
+ for k,v in tkz.special_tokens_map.items():
79
+ c[k+"_id"]=tkz.convert_tokens_to_ids(v)
80
+ cfg=AutoConfig.from_pretrained("ModernBERT-base",**c)
81
+ arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,save_safetensors=False)
82
+ class ReadLineDS(object):
83
+ def __init__(self,file,tokenizer):
84
+ self.tokenizer=tokenizer
85
+ with open(file,"r",encoding="utf-8") as r:
86
+ self.lines=[s.strip() for s in r if s.strip()>""]
87
+ __len__=lambda self:len(self.lines)
88
+ __getitem__=lambda self,i:self.tokenizer(self.lines[i],truncation=True,add_special_tokens=True,max_length=8190)
89
+ trn=Trainer(args=arg,data_collator=DataCollatorForLanguageModeling(tkz),model=ModernBertForMaskedLM(cfg),train_dataset=ReadLineDS("train.txt",tkz))
90
+ trn.train()
91
+ trn.save_model(tgt)''',file=w)
92
+ os.system("chmod 755 train.py ; ./train.py")
93
+ os.system(f"cp ModernBERT-base/*.py {tgt}")
modeling_modernbert.py ADDED
@@ -0,0 +1,1312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_modernbert.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
8
+ #
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import math
23
+ from typing import Dict, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
32
+ from transformers.modeling_outputs import BaseModelOutput, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (
35
+ add_code_sample_docstrings,
36
+ add_start_docstrings,
37
+ add_start_docstrings_to_model_forward,
38
+ is_flash_attn_2_available,
39
+ logging,
40
+ )
41
+ import importlib
42
+ is_triton_available = lambda: importlib.util.find_spec("triton") is not None
43
+ from .configuration_modernbert import ModernBertConfig
44
+
45
+
46
+ if is_flash_attn_2_available():
47
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
48
+ from flash_attn.layers.rotary import RotaryEmbedding
49
+ from flash_attn.ops.triton.rotary import apply_rotary
50
+ else:
51
+ RotaryEmbedding = object
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base"
56
+ _CONFIG_FOR_DOC = "ModernBertConfig"
57
+
58
+
59
+ class ApplyRotaryEmbUnpad(torch.autograd.Function):
60
+ @staticmethod
61
+ def forward(
62
+ ctx,
63
+ qkv,
64
+ cos,
65
+ sin,
66
+ cu_seqlens: Optional[torch.Tensor] = None,
67
+ max_seqlen: Optional[int] = None,
68
+ ):
69
+ # (total_nnz, 3, nheads, headdim)
70
+ qkv = qkv.contiguous()
71
+ total_nnz, _three, _nheads, headdim = qkv.shape
72
+ # We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
73
+ # we get the same tensor
74
+ # qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
75
+ qk = qkv[:, :2].view(total_nnz, -1, headdim)
76
+ apply_rotary(
77
+ qk,
78
+ cos,
79
+ sin,
80
+ seqlen_offsets=0,
81
+ cu_seqlens=cu_seqlens,
82
+ max_seqlen=max_seqlen,
83
+ interleaved=False,
84
+ inplace=True,
85
+ )
86
+
87
+ ctx.save_for_backward(cos, sin, cu_seqlens)
88
+ ctx.max_seqlen = max_seqlen
89
+ return qkv
90
+
91
+ @staticmethod
92
+ def backward(ctx, do):
93
+ cos, sin, cu_seqlens = ctx.saved_tensors
94
+ do = do.contiguous()
95
+ total_nnz, _three, _nheads, headdim = do.shape
96
+ # We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
97
+ # we get the same tensor
98
+ dqk = do[:, :2].view(total_nnz, -1, headdim)
99
+ apply_rotary(
100
+ dqk,
101
+ cos,
102
+ sin,
103
+ seqlen_offsets=0,
104
+ cu_seqlens=cu_seqlens,
105
+ max_seqlen=ctx.max_seqlen,
106
+ interleaved=False,
107
+ inplace=True,
108
+ conjugate=True,
109
+ )
110
+
111
+ return do, None, None, None, None, None, None
112
+
113
+
114
+ def apply_rotary_unpadded(
115
+ qkv,
116
+ cos,
117
+ sin,
118
+ cu_seqlens: Optional[torch.Tensor] = None,
119
+ max_seqlen: Optional[int] = None,
120
+ ):
121
+ """
122
+ Arguments:
123
+ qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
124
+ cos, sin: (seqlen_rotary, rotary_dim / 2)
125
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
126
+ of 1st half and 2nd half (GPT-NeoX style).
127
+ inplace: if True, apply rotary embedding in-place.
128
+ seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
129
+ Most commonly used in inference when we have KV cache.
130
+ cu_seqlens: (batch + 1,) or None
131
+ max_seqlen: int
132
+ Return:
133
+ out: (total_nnz, dim)
134
+ rotary_dim must be <= headdim
135
+ Apply rotary embedding to the first rotary_dim of x.
136
+ """
137
+ return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
138
+
139
+
140
+ class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding):
141
+ """
142
+ The rotary position embeddings applied directly to unpadded sequences.
143
+ """
144
+
145
+ def __init__(
146
+ self,
147
+ dim: int,
148
+ base: float = 10000.0,
149
+ max_seqlen: Optional[int] = None,
150
+ device: Optional[torch.device] = None,
151
+ dtype: Optional[torch.dtype] = None,
152
+ ):
153
+ """
154
+ max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
155
+ up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
156
+ the cos_sin_cache wll be recomputed during the forward pass.
157
+ """
158
+ super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=device, interleaved=False)
159
+ self.max_seqlen = max_seqlen
160
+
161
+ if max_seqlen is not None and device is not None and dtype is not None:
162
+ self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)
163
+
164
+ def forward(
165
+ self,
166
+ qkv: torch.Tensor,
167
+ cu_seqlens: torch.Tensor,
168
+ max_seqlen: Optional[int] = None,
169
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
170
+ """
171
+ Apply rotary embedding *inplace* to qkv.
172
+ qkv: (total_nnz, 3, nheads, headdim)
173
+ cu_seqlens: (batch + 1,) cumulative sequence lengths
174
+ max_seqlen: int max seq length in the batch
175
+ """
176
+ if max_seqlen is not None:
177
+ self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
178
+
179
+ qkv = apply_rotary_unpadded(
180
+ qkv,
181
+ self._cos_cached,
182
+ self._sin_cached,
183
+ cu_seqlens=cu_seqlens,
184
+ max_seqlen=max_seqlen,
185
+ )
186
+
187
+ return qkv
188
+
189
+ def extra_repr(self) -> str:
190
+ return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"
191
+
192
+
193
+ class ModernBertEmbeddings(nn.Module):
194
+ """
195
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
196
+ """
197
+
198
+ def __init__(self, config: ModernBertConfig):
199
+ super().__init__()
200
+ self.config = config
201
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
202
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
203
+ self.drop = nn.Dropout(config.embedding_dropout)
204
+
205
+ @torch.compile(dynamic=True)
206
+ def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
207
+ return self.drop(self.norm(self.tok_embeddings(input_ids)))
208
+
209
+ def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor:
210
+ hidden_states = (
211
+ self.compiled_embeddings(input_ids)
212
+ if self.config.reference_compile
213
+ else self.drop(self.norm(self.tok_embeddings(input_ids)))
214
+ )
215
+ return hidden_states
216
+
217
+
218
+ class ModernBertMLP(nn.Module):
219
+ """Applies the GLU at the end of each ModernBERT layer.
220
+
221
+ Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
222
+ and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
223
+ """
224
+
225
+ def __init__(self, config: ModernBertConfig):
226
+ super().__init__()
227
+ self.config = config
228
+ self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias)
229
+ self.act = ACT2FN[config.hidden_activation]
230
+ self.drop = nn.Dropout(config.mlp_dropout)
231
+ self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias)
232
+
233
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
234
+ input, gate = self.Wi(hidden_states).chunk(2, dim=-1)
235
+ return self.Wo(self.drop(self.act(input) * gate))
236
+
237
+
238
+ class ModernBertRotaryEmbedding(nn.Module):
239
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
240
+ super().__init__()
241
+
242
+ self.dim = dim
243
+ self.max_position_embeddings = max_position_embeddings
244
+ self.base = base
245
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
246
+ self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
247
+
248
+ @torch.no_grad()
249
+ def forward(self, x, position_ids, seq_len=None):
250
+ # x: [bs, num_attention_heads, seq_len, head_size]
251
+ self.inv_freq.to(x.device)
252
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
253
+ position_ids_expanded = position_ids[:, None, :].float()
254
+ # Force float32 since bfloat16 loses precision on long contexts
255
+ # See https://github.com/huggingface/transformers/pull/29285
256
+ device_type = x.device.type
257
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
258
+ with torch.autocast(device_type=device_type, enabled=False):
259
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
260
+ emb = torch.cat((freqs, freqs), dim=-1)
261
+ cos = emb.cos()
262
+ sin = emb.sin()
263
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
264
+
265
+
266
+ def rotate_half(x):
267
+ """Rotates half the hidden dims of the input."""
268
+ x1 = x[..., : x.shape[-1] // 2]
269
+ x2 = x[..., x.shape[-1] // 2 :]
270
+ return torch.cat((-x2, x1), dim=-1)
271
+
272
+
273
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
274
+ """Applies Rotary Position Embedding to the query and key tensors.
275
+
276
+ Args:
277
+ q (`torch.Tensor`): The query tensor.
278
+ k (`torch.Tensor`): The key tensor.
279
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
280
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
281
+ position_ids (`torch.Tensor`, *optional*):
282
+ Deprecated and unused.
283
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
284
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
285
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
286
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
287
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
288
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
289
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
290
+ Returns:
291
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
292
+ """
293
+ cos = cos.unsqueeze(unsqueeze_dim)
294
+ sin = sin.unsqueeze(unsqueeze_dim)
295
+ q_embed = (q * cos) + (rotate_half(q) * sin)
296
+ k_embed = (k * cos) + (rotate_half(k) * sin)
297
+ return q_embed, k_embed
298
+
299
+
300
+ def eager_attention_forward(
301
+ module: "ModernBertAttention",
302
+ qkv: torch.Tensor,
303
+ attention_mask: torch.Tensor,
304
+ sliding_window_mask: torch.Tensor,
305
+ position_ids: Optional[torch.LongTensor],
306
+ local_attention: Tuple[int, int],
307
+ bs: int,
308
+ dim: int,
309
+ output_attentions: Optional[bool] = False,
310
+ **_kwargs,
311
+ ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
312
+ # qkv: [batch_size, seqlen, 3, nheads, headdim]
313
+ cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
314
+ query, key, value = qkv.transpose(3, 1).unbind(dim=2)
315
+ # query, key, value: [batch_size, heads, seq_len, head_dim]
316
+ query, key = apply_rotary_pos_emb(query, key, cos, sin)
317
+
318
+ scale = module.head_dim**-0.5
319
+ attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale
320
+
321
+ if local_attention != (-1, -1):
322
+ attention_mask = sliding_window_mask
323
+
324
+ attn_weights = attn_weights + attention_mask
325
+
326
+ # upcast attention to fp32
327
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
328
+ attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
329
+ attn_output = torch.matmul(attn_weights, value)
330
+ attn_output = attn_output.transpose(1, 2).contiguous()
331
+ attn_output = attn_output.view(bs, -1, dim)
332
+ if output_attentions:
333
+ return (attn_output, attn_weights)
334
+ return (attn_output,)
335
+
336
+
337
+ def flash_attention_forward(
338
+ module: "ModernBertAttention",
339
+ qkv: torch.Tensor,
340
+ rotary_emb: ModernBertUnpaddedRotaryEmbedding,
341
+ cu_seqlens: torch.Tensor,
342
+ max_seqlen: int,
343
+ local_attention: Tuple[int, int],
344
+ bs: int,
345
+ dim: int,
346
+ target_dtype: torch.dtype = torch.bfloat16,
347
+ **_kwargs,
348
+ ) -> Tuple[torch.Tensor]:
349
+ # (total_seqlen, 3, nheads, headdim)
350
+ qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
351
+
352
+ convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
353
+ if convert_dtype:
354
+ # FA2 implementation only supports fp16 and bf16. If FA2 is supported,
355
+ # bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
356
+ orig_dtype = qkv.dtype
357
+ qkv = qkv.to(target_dtype)
358
+
359
+ attn = flash_attn_varlen_qkvpacked_func(
360
+ qkv,
361
+ cu_seqlens=cu_seqlens,
362
+ max_seqlen=max_seqlen,
363
+ dropout_p=module.attention_dropout if module.training else 0.0,
364
+ deterministic=module.deterministic_flash_attn,
365
+ window_size=local_attention,
366
+ )
367
+ attn = attn.to(orig_dtype) # type: ignore
368
+ else:
369
+ attn = flash_attn_varlen_qkvpacked_func(
370
+ qkv,
371
+ cu_seqlens=cu_seqlens,
372
+ max_seqlen=max_seqlen,
373
+ dropout_p=module.attention_dropout if module.training else 0.0,
374
+ deterministic=module.deterministic_flash_attn,
375
+ window_size=local_attention,
376
+ )
377
+ return (attn.view(bs, dim),)
378
+
379
+
380
+ def sdpa_attention_forward(
381
+ module: "ModernBertAttention",
382
+ qkv: torch.Tensor,
383
+ attention_mask: torch.Tensor,
384
+ sliding_window_mask: torch.Tensor,
385
+ position_ids: Optional[torch.LongTensor],
386
+ local_attention: Tuple[int, int],
387
+ bs: int,
388
+ dim: int,
389
+ **_kwargs,
390
+ ) -> Tuple[torch.Tensor]:
391
+ # qkv: [batch_size, seqlen, 3, nheads, headdim]
392
+ cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
393
+ query, key, value = qkv.transpose(3, 1).unbind(dim=2)
394
+ # query, key, value: [batch_size, heads, seq_len, head_dim]
395
+ query, key = apply_rotary_pos_emb(query, key, cos, sin)
396
+
397
+ if local_attention != (-1, -1):
398
+ attention_mask = sliding_window_mask
399
+
400
+ attn_output = (
401
+ F.scaled_dot_product_attention(
402
+ query,
403
+ key,
404
+ value,
405
+ dropout_p=module.attention_dropout if module.training else 0.0,
406
+ attn_mask=attention_mask,
407
+ )
408
+ .transpose(1, 2)
409
+ .contiguous()
410
+ )
411
+ attn_output = attn_output.view(bs, -1, dim)
412
+ return (attn_output,)
413
+
414
+
415
+ MODERNBERT_ATTENTION_FUNCTION = {
416
+ "flash_attention_2": flash_attention_forward,
417
+ "eager": eager_attention_forward,
418
+ "sdpa": sdpa_attention_forward,
419
+ }
420
+
421
+
422
+ class ModernBertAttention(nn.Module):
423
+ """Performs multi-headed self attention on a batch of unpadded sequences.
424
+
425
+ If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
426
+ If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
427
+ which requires padding and unpadding inputs, adding some overhead.
428
+
429
+ See `forward` method for additional details.
430
+ """
431
+
432
+ def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
433
+ super().__init__()
434
+ self.config = config
435
+ self.layer_id = layer_id
436
+
437
+ if config.hidden_size % config.num_attention_heads != 0:
438
+ raise ValueError(
439
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
440
+ )
441
+
442
+ self.attention_dropout = config.attention_dropout
443
+ self.deterministic_flash_attn = config.deterministic_flash_attn
444
+ self.num_heads = config.num_attention_heads
445
+ self.head_dim = config.hidden_size // config.num_attention_heads
446
+ self.all_head_size = self.head_dim * self.num_heads
447
+ self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias)
448
+
449
+ if layer_id % config.global_attn_every_n_layers != 0:
450
+ self.local_attention = (config.local_attention // 2, config.local_attention // 2)
451
+ else:
452
+ self.local_attention = (-1, -1)
453
+
454
+ rope_theta = config.global_rope_theta
455
+ max_position_embeddings = config.max_position_embeddings
456
+ if self.local_attention != (-1, -1):
457
+ if config.local_rope_theta is not None:
458
+ rope_theta = config.local_rope_theta
459
+ max_position_embeddings = config.local_attention
460
+
461
+ if config._attn_implementation == "flash_attention_2":
462
+ self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
463
+ dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
464
+ )
465
+ else:
466
+ self.rotary_emb = ModernBertRotaryEmbedding(
467
+ dim=self.head_dim, max_position_embeddings=max_position_embeddings, base=rope_theta
468
+ )
469
+
470
+ self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
471
+ self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
472
+ self.pruned_heads = set()
473
+
474
+ def forward(
475
+ self,
476
+ hidden_states: torch.Tensor,
477
+ output_attentions: Optional[bool] = False,
478
+ **kwargs,
479
+ ) -> torch.Tensor:
480
+ qkv = self.Wqkv(hidden_states)
481
+
482
+ bs = hidden_states.shape[0]
483
+ if self.config._attn_implementation == "flash_attention_2":
484
+ qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
485
+ else:
486
+ qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim)
487
+
488
+ attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation](
489
+ self,
490
+ qkv=qkv,
491
+ rotary_emb=self.rotary_emb,
492
+ local_attention=self.local_attention,
493
+ bs=bs,
494
+ dim=self.all_head_size,
495
+ output_attentions=output_attentions,
496
+ **kwargs,
497
+ )
498
+ hidden_states = attn_outputs[0]
499
+ hidden_states = self.out_drop(self.Wo(hidden_states))
500
+
501
+ return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
502
+
503
+
504
+ class ModernBertEncoderLayer(nn.Module):
505
+ def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
506
+ super().__init__()
507
+ self.config = config
508
+ if layer_id == 0:
509
+ self.attn_norm = nn.Identity()
510
+ else:
511
+ self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
512
+ self.attn = ModernBertAttention(config=config, layer_id=layer_id)
513
+ self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
514
+ self.mlp = ModernBertMLP(config)
515
+
516
+ @torch.compile(dynamic=True)
517
+ def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
518
+ return self.mlp(self.mlp_norm(hidden_states))
519
+
520
+ def forward(
521
+ self,
522
+ hidden_states: torch.Tensor,
523
+ attention_mask: Optional[torch.Tensor] = None,
524
+ sliding_window_mask: Optional[torch.Tensor] = None,
525
+ position_ids: Optional[torch.LongTensor] = None,
526
+ cu_seqlens: Optional[torch.Tensor] = None,
527
+ max_seqlen: Optional[int] = None,
528
+ output_attentions: Optional[bool] = False,
529
+ ) -> torch.Tensor:
530
+ attn_outputs = self.attn(
531
+ self.attn_norm(hidden_states),
532
+ attention_mask=attention_mask,
533
+ sliding_window_mask=sliding_window_mask,
534
+ position_ids=position_ids,
535
+ cu_seqlens=cu_seqlens,
536
+ max_seqlen=max_seqlen,
537
+ output_attentions=output_attentions,
538
+ )
539
+ hidden_states = hidden_states + attn_outputs[0]
540
+ mlp_output = (
541
+ self.compiled_mlp(hidden_states)
542
+ if self.config.reference_compile
543
+ else self.mlp(self.mlp_norm(hidden_states))
544
+ )
545
+ hidden_states = hidden_states + mlp_output
546
+
547
+ return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
548
+
549
+
550
+ MODERNBERT_START_DOCSTRING = r"""
551
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
552
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
553
+ etc.)
554
+
555
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
556
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
557
+ and behavior.
558
+
559
+ Parameters:
560
+ config ([`ModernBertConfig`]):
561
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
562
+ load the weights associated with the model, only the configuration. Check out the
563
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
564
+ """
565
+
566
+
567
+ @add_start_docstrings(
568
+ "The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
569
+ MODERNBERT_START_DOCSTRING,
570
+ )
571
+ class ModernBertPreTrainedModel(PreTrainedModel):
572
+ config_class = ModernBertConfig
573
+ base_model_prefix = "model"
574
+ supports_gradient_checkpointing = True
575
+ _no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"]
576
+ _supports_flash_attn_2 = True
577
+ _supports_sdpa = True
578
+ _supports_flex_attn = False
579
+
580
+ def _init_weights(self, module: nn.Module):
581
+ cutoff_factor = self.config.initializer_cutoff_factor
582
+ if cutoff_factor is None:
583
+ cutoff_factor = 3
584
+
585
+ def init_weight(module: nn.Module, std: float):
586
+ nn.init.trunc_normal_(
587
+ module.weight,
588
+ mean=0.0,
589
+ std=std,
590
+ a=-cutoff_factor * std,
591
+ b=cutoff_factor * std,
592
+ )
593
+
594
+ if isinstance(module, nn.Linear):
595
+ if module.bias is not None:
596
+ nn.init.zeros_(module.bias)
597
+
598
+ stds = {
599
+ "in": self.config.initializer_range,
600
+ "out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers),
601
+ "embedding": self.config.initializer_range,
602
+ "final_out": self.config.hidden_size**-0.5,
603
+ }
604
+
605
+ if isinstance(module, ModernBertEmbeddings):
606
+ init_weight(module.tok_embeddings, stds["embedding"])
607
+ elif isinstance(module, ModernBertMLP):
608
+ init_weight(module.Wi, stds["in"])
609
+ init_weight(module.Wo, stds["out"])
610
+ elif isinstance(module, ModernBertAttention):
611
+ init_weight(module.Wqkv, stds["in"])
612
+ init_weight(module.Wo, stds["out"])
613
+ elif isinstance(module, ModernBertPredictionHead):
614
+ init_weight(module.dense, stds["out"])
615
+ elif isinstance(module, ModernBertForMaskedLM):
616
+ init_weight(module.decoder, stds["out"])
617
+ elif isinstance(module, (ModernBertForSequenceClassification, ModernBertForTokenClassification)):
618
+ init_weight(module.classifier, stds["final_out"])
619
+
620
+ @classmethod
621
+ def _autoset_attn_implementation(
622
+ cls,
623
+ config,
624
+ use_flash_attention_2: bool = False,
625
+ torch_dtype: Optional[torch.dtype] = None,
626
+ device_map: Optional[Union[str, Dict[str, int]]] = None,
627
+ check_device_map: bool = True,
628
+ ):
629
+ # If the user didn't specify anything, try to use flash_attention_2 if available.
630
+ # Otherwise we fall back to the default SDPA -> Eager from the super() method.
631
+ if config._attn_implementation_internal is None:
632
+ config._attn_implementation_internal = "flash_attention_2"
633
+ try:
634
+ return cls._check_and_enable_flash_attn_2(
635
+ config,
636
+ torch_dtype=torch_dtype,
637
+ device_map=device_map,
638
+ hard_check_only=False,
639
+ check_device_map=check_device_map,
640
+ )
641
+ except (ValueError, ImportError):
642
+ config._attn_implementation_internal = None
643
+ return super()._autoset_attn_implementation(
644
+ config,
645
+ use_flash_attention_2=use_flash_attention_2,
646
+ torch_dtype=torch_dtype,
647
+ device_map=device_map,
648
+ check_device_map=check_device_map,
649
+ )
650
+
651
+ def _maybe_set_compile(self):
652
+ if self.config.reference_compile is False:
653
+ return
654
+
655
+ if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
656
+ if self.config.reference_compile:
657
+ logger.warning_once(
658
+ "If `accelerate` split the model across devices, `torch.compile` will not work. "
659
+ "Falling back to non-compiled mode."
660
+ )
661
+ self.config.reference_compile = False
662
+
663
+ if self.device.type == "mps":
664
+ if self.config.reference_compile:
665
+ logger.warning_once(
666
+ "Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
667
+ "Falling back to non-compiled mode."
668
+ )
669
+ self.config.reference_compile = False
670
+
671
+ if self.config.reference_compile is None:
672
+ self.config.reference_compile = is_triton_available()
673
+
674
+ def resize_token_embeddings(self, *args, **kwargs):
675
+ model_embeds = super().resize_token_embeddings(*args, **kwargs)
676
+
677
+ if self.config.reference_compile in {True, None}:
678
+ if self.config.reference_compile:
679
+ logger.warning_once(
680
+ "Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
681
+ )
682
+ self.config.reference_compile = False
683
+
684
+ return model_embeds
685
+
686
+
687
+ def _unpad_modernbert_input(
688
+ inputs: torch.Tensor,
689
+ attention_mask: torch.Tensor,
690
+ position_ids: Optional[torch.Tensor] = None,
691
+ labels: Optional[torch.Tensor] = None,
692
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]:
693
+ """
694
+ Remove padding from input sequences.
695
+
696
+ Args:
697
+ inputs: (batch, seqlen, ...) or (batch, seqlen)
698
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
699
+ position_ids: (batch, seqlen), int, position ids
700
+ labels: (batch, seqlen), int, labels
701
+
702
+ Returns:
703
+ unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
704
+ indices: (total_nnz)
705
+ cu_seqlens: (batch + 1), the cumulative sequence lengths
706
+ max_seqlen_in_batch: int
707
+ unpadded_position_ids: (total_nnz) or None
708
+ unpadded_labels: (total_nnz) or None
709
+ """
710
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
711
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
712
+ max_seqlen_in_batch = int(seqlens_in_batch.max().item())
713
+ cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
714
+
715
+ if inputs.dim() == 2:
716
+ unpadded_inputs = inputs.flatten()[indices]
717
+ else:
718
+ batch, seqlen, *rest = inputs.shape
719
+ shape = batch * seqlen
720
+ unpadded_inputs = inputs.view(shape, *rest)[indices]
721
+
722
+ unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
723
+ unpadded_labels = labels.flatten()[indices] if labels is not None else None
724
+
725
+ return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels
726
+
727
+
728
+ def _pad_modernbert_output(
729
+ inputs: torch.Tensor,
730
+ indices: torch.Tensor,
731
+ batch: int,
732
+ seqlen: int,
733
+ ) -> torch.Tensor:
734
+ """
735
+ Add padding to sequences.
736
+
737
+ Args:
738
+ inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
739
+ indices: (total_nnz)
740
+ batch: int, batch size
741
+ seqlen: int, max sequence length
742
+
743
+ Returns:
744
+ padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
745
+ """
746
+ if inputs.dim() == 1:
747
+ output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
748
+ output[indices] = inputs
749
+ padded_inputs = output.view(batch, seqlen)
750
+ else:
751
+ _, *rest = inputs.shape
752
+ output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
753
+ output[indices] = inputs
754
+ padded_inputs = output.view(batch, seqlen, *rest)
755
+
756
+ return padded_inputs
757
+
758
+
759
+ MODERNBERT_INPUTS_DOCSTRING = r"""
760
+ Args:
761
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
762
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
763
+ it.
764
+
765
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
766
+ [`PreTrainedTokenizer.__call__`] for details.
767
+
768
+ [What are input IDs?](../glossary#input-ids)
769
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
770
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
771
+
772
+ - 1 for tokens that are **not masked**,
773
+ - 0 for tokens that are **masked**.
774
+
775
+ [What are attention masks?](../glossary#attention-mask)
776
+
777
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
778
+ [`PreTrainedTokenizer.__call__`] for details.
779
+
780
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
781
+ `past_key_values`).
782
+
783
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
784
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
785
+ information on the default strategy.
786
+
787
+ - 1 indicates the head is **not masked**,
788
+ - 0 indicates the head is **masked**.
789
+ sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
790
+ Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
791
+ perform global attention, while the rest perform local attention. This mask is used to avoid attending to
792
+ far-away tokens in the local attention layers.
793
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
794
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
795
+ config.n_positions - 1]`.
796
+
797
+ [What are position IDs?](../glossary#position-ids)
798
+ indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
799
+ Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
800
+ cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
801
+ Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
802
+ max_seqlen (`int`, *optional*):
803
+ Maximum sequence length in the batch. Used to pad the output tensors.
804
+ batch_size (`int`, *optional*):
805
+ Batch size of the input sequences. Used to pad the output tensors.
806
+ seq_len (`int`, *optional*):
807
+ Sequence length of the input sequences. Used to pad the output tensors.
808
+ output_attentions (`bool`, *optional*):
809
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
810
+ tensors for more detail.
811
+ output_hidden_states (`bool`, *optional*):
812
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
813
+ more detail.
814
+ return_dict (`bool`, *optional*):
815
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
816
+ """
817
+
818
+
819
+ @add_start_docstrings(
820
+ "The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
821
+ MODERNBERT_START_DOCSTRING,
822
+ )
823
+ class ModernBertModel(ModernBertPreTrainedModel):
824
+ def __init__(self, config: ModernBertConfig):
825
+ super().__init__(config)
826
+ self.config = config
827
+ self.embeddings = ModernBertEmbeddings(config)
828
+ self.layers = nn.ModuleList(
829
+ [ModernBertEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
830
+ )
831
+ self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
832
+ self.gradient_checkpointing = False
833
+ self.post_init()
834
+
835
+ def get_input_embeddings(self):
836
+ return self.embeddings.tok_embeddings
837
+
838
+ def set_input_embeddings(self, value):
839
+ self.embeddings.tok_embeddings = value
840
+
841
+ @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
842
+ @add_code_sample_docstrings(
843
+ checkpoint=_CHECKPOINT_FOR_DOC,
844
+ output_type=BaseModelOutput,
845
+ config_class=_CONFIG_FOR_DOC,
846
+ )
847
+ def forward(
848
+ self,
849
+ input_ids: torch.LongTensor = None,
850
+ attention_mask: Optional[torch.Tensor] = None,
851
+ sliding_window_mask: Optional[torch.Tensor] = None,
852
+ position_ids: Optional[torch.LongTensor] = None,
853
+ indices: Optional[torch.Tensor] = None,
854
+ cu_seqlens: Optional[torch.Tensor] = None,
855
+ max_seqlen: Optional[int] = None,
856
+ batch_size: Optional[int] = None,
857
+ seq_len: Optional[int] = None,
858
+ output_attentions: Optional[bool] = None,
859
+ output_hidden_states: Optional[bool] = None,
860
+ return_dict: Optional[bool] = None,
861
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]:
862
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
863
+ output_hidden_states = (
864
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
865
+ )
866
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
867
+
868
+ all_hidden_states = () if output_hidden_states else None
869
+ all_self_attentions = () if output_attentions else None
870
+
871
+ self._maybe_set_compile()
872
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
873
+
874
+ if batch_size is None and seq_len is None:
875
+ batch_size, seq_len = input_ids.shape[:2]
876
+
877
+ if attention_mask is None:
878
+ attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool)
879
+
880
+ repad = False
881
+ if self.config._attn_implementation == "flash_attention_2":
882
+ if indices is None and cu_seqlens is None and max_seqlen is None:
883
+ repad = True
884
+ with torch.no_grad():
885
+ input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
886
+ inputs=input_ids, attention_mask=attention_mask
887
+ )
888
+ else:
889
+ if position_ids is None:
890
+ position_ids = torch.arange(seq_len, device=input_ids.device).unsqueeze(0)
891
+
892
+ attention_mask, sliding_window_mask = self._update_attention_mask(
893
+ attention_mask, output_attentions=output_attentions
894
+ )
895
+
896
+ hidden_states = self.embeddings(input_ids)
897
+
898
+ for encoder_layer in self.layers:
899
+ if output_hidden_states:
900
+ all_hidden_states = all_hidden_states + (hidden_states,)
901
+
902
+ if self.gradient_checkpointing and self.training:
903
+ layer_outputs = self._gradient_checkpointing_func(
904
+ encoder_layer.__call__,
905
+ hidden_states,
906
+ attention_mask,
907
+ sliding_window_mask,
908
+ position_ids,
909
+ cu_seqlens,
910
+ max_seqlen,
911
+ output_attentions,
912
+ )
913
+ else:
914
+ layer_outputs = encoder_layer(
915
+ hidden_states,
916
+ attention_mask=attention_mask,
917
+ sliding_window_mask=sliding_window_mask,
918
+ position_ids=position_ids,
919
+ cu_seqlens=cu_seqlens,
920
+ max_seqlen=max_seqlen,
921
+ output_attentions=output_attentions,
922
+ )
923
+ hidden_states = layer_outputs[0]
924
+ if output_attentions and len(layer_outputs) > 1:
925
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
926
+
927
+ if output_hidden_states:
928
+ all_hidden_states = all_hidden_states + (hidden_states,)
929
+
930
+ hidden_states = self.final_norm(hidden_states)
931
+
932
+ if repad:
933
+ hidden_states = _pad_modernbert_output(
934
+ inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
935
+ )
936
+ if all_hidden_states is not None:
937
+ all_hidden_states = tuple(
938
+ _pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
939
+ for hs in all_hidden_states
940
+ )
941
+
942
+ if not return_dict:
943
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
944
+ return BaseModelOutput(
945
+ last_hidden_state=hidden_states,
946
+ hidden_states=all_hidden_states,
947
+ attentions=all_self_attentions,
948
+ )
949
+
950
+ def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
951
+ if output_attentions:
952
+ if self.config._attn_implementation == "sdpa":
953
+ logger.warning_once(
954
+ "Outputting attentions is only supported with the 'eager' attention implementation, "
955
+ 'not with "sdpa". Falling back to `attn_implementation="eager"`.'
956
+ )
957
+ self.config._attn_implementation = "eager"
958
+ elif self.config._attn_implementation != "eager":
959
+ logger.warning_once(
960
+ "Outputting attentions is only supported with the eager attention implementation, "
961
+ f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
962
+ " Setting `output_attentions=False`."
963
+ )
964
+
965
+ global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)
966
+
967
+ # Create position indices
968
+ rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
969
+ # Calculate distance between positions
970
+ distance = torch.abs(rows - rows.T)
971
+
972
+ # Create sliding window mask (1 for positions within window, 0 outside)
973
+ window_mask = (
974
+ (distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
975
+ )
976
+ # Combine with existing mask
977
+ sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)
978
+
979
+ return global_attention_mask, sliding_window_mask
980
+
981
+
982
+ class ModernBertPredictionHead(nn.Module):
983
+ def __init__(self, config: ModernBertConfig):
984
+ super().__init__()
985
+ self.config = config
986
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias)
987
+ self.act = ACT2FN[config.classifier_activation]
988
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
989
+
990
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
991
+ return self.norm(self.act(self.dense(hidden_states)))
992
+
993
+
994
+ @add_start_docstrings(
995
+ "The ModernBert Model with a decoder head on top that is used for masked language modeling.",
996
+ MODERNBERT_START_DOCSTRING,
997
+ )
998
+ class ModernBertForMaskedLM(ModernBertPreTrainedModel):
999
+ _tied_weights_keys = ["decoder.weight"]
1000
+
1001
+ def __init__(self, config: ModernBertConfig):
1002
+ super().__init__(config)
1003
+ self.config = config
1004
+ self.model = ModernBertModel(config)
1005
+ self.head = ModernBertPredictionHead(config)
1006
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
1007
+
1008
+ self.sparse_prediction = self.config.sparse_prediction
1009
+ self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
1010
+
1011
+ # Initialize weights and apply final processing
1012
+ self.post_init()
1013
+
1014
+ def get_output_embeddings(self):
1015
+ return self.decoder
1016
+
1017
+ def set_output_embeddings(self, new_embeddings: nn.Linear):
1018
+ self.decoder = new_embeddings
1019
+
1020
+ @torch.compile(dynamic=True)
1021
+ def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
1022
+ return self.decoder(self.head(output))
1023
+
1024
+ @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
1025
+ @add_code_sample_docstrings(
1026
+ checkpoint=_CHECKPOINT_FOR_DOC,
1027
+ output_type=MaskedLMOutput,
1028
+ config_class=_CONFIG_FOR_DOC,
1029
+ )
1030
+ def forward(
1031
+ self,
1032
+ input_ids: Optional[torch.Tensor],
1033
+ attention_mask: Optional[torch.Tensor] = None,
1034
+ sliding_window_mask: Optional[torch.Tensor] = None,
1035
+ position_ids: Optional[torch.Tensor] = None,
1036
+ labels: Optional[torch.Tensor] = None,
1037
+ indices: Optional[torch.Tensor] = None,
1038
+ cu_seqlens: Optional[torch.Tensor] = None,
1039
+ max_seqlen: Optional[int] = None,
1040
+ batch_size: Optional[int] = None,
1041
+ seq_len: Optional[int] = None,
1042
+ output_attentions: Optional[bool] = None,
1043
+ output_hidden_states: Optional[bool] = None,
1044
+ return_dict: Optional[bool] = None,
1045
+ **kwargs,
1046
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1047
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1048
+ self._maybe_set_compile()
1049
+
1050
+ if self.config._attn_implementation == "flash_attention_2":
1051
+ if indices is None and cu_seqlens is None and max_seqlen is None:
1052
+ batch_size, seq_len = input_ids.shape[:2]
1053
+ if attention_mask is None:
1054
+ attention_mask = torch.ones((batch_size, seq_len), device=input_ids.device, dtype=torch.bool)
1055
+ with torch.no_grad():
1056
+ input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
1057
+ inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
1058
+ )
1059
+
1060
+ outputs = self.model(
1061
+ input_ids,
1062
+ attention_mask=attention_mask,
1063
+ sliding_window_mask=sliding_window_mask,
1064
+ position_ids=position_ids,
1065
+ indices=indices,
1066
+ cu_seqlens=cu_seqlens,
1067
+ max_seqlen=max_seqlen,
1068
+ batch_size=batch_size,
1069
+ seq_len=seq_len,
1070
+ output_attentions=output_attentions,
1071
+ output_hidden_states=output_hidden_states,
1072
+ return_dict=return_dict,
1073
+ )
1074
+ last_hidden_state = outputs[0]
1075
+
1076
+ if self.sparse_prediction and labels is not None:
1077
+ # flatten labels and output first
1078
+ labels = labels.view(-1)
1079
+ last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
1080
+
1081
+ # then filter out the non-masked tokens
1082
+ mask_tokens = labels != self.sparse_pred_ignore_index
1083
+ last_hidden_state = last_hidden_state[mask_tokens]
1084
+ labels = labels[mask_tokens]
1085
+
1086
+ logits = (
1087
+ self.compiled_head(last_hidden_state)
1088
+ if self.config.reference_compile
1089
+ else self.decoder(self.head(last_hidden_state))
1090
+ )
1091
+
1092
+ loss = None
1093
+ if labels is not None:
1094
+ loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size)
1095
+
1096
+ if self.config._attn_implementation == "flash_attention_2":
1097
+ with torch.no_grad():
1098
+ logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
1099
+ if not return_dict:
1100
+ output = (logits,)
1101
+ return ((loss,) + output) if loss is not None else output
1102
+
1103
+ return MaskedLMOutput(
1104
+ loss=loss,
1105
+ logits=logits,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+
1110
+
1111
+ @add_start_docstrings(
1112
+ "The ModernBert Model with a sequence classification head on top that performs pooling.",
1113
+ MODERNBERT_START_DOCSTRING,
1114
+ )
1115
+ class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
1116
+ def __init__(self, config: ModernBertConfig):
1117
+ super().__init__(config)
1118
+ self.num_labels = config.num_labels
1119
+ self.config = config
1120
+
1121
+ self.model = ModernBertModel(config)
1122
+ self.head = ModernBertPredictionHead(config)
1123
+ self.drop = torch.nn.Dropout(config.classifier_dropout)
1124
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1125
+
1126
+ # Initialize weights and apply final processing
1127
+ self.post_init()
1128
+
1129
+ @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
1130
+ @add_code_sample_docstrings(
1131
+ checkpoint=_CHECKPOINT_FOR_DOC,
1132
+ output_type=SequenceClassifierOutput,
1133
+ config_class=_CONFIG_FOR_DOC,
1134
+ )
1135
+ def forward(
1136
+ self,
1137
+ input_ids: Optional[torch.Tensor],
1138
+ attention_mask: Optional[torch.Tensor] = None,
1139
+ sliding_window_mask: Optional[torch.Tensor] = None,
1140
+ position_ids: Optional[torch.Tensor] = None,
1141
+ labels: Optional[torch.Tensor] = None,
1142
+ indices: Optional[torch.Tensor] = None,
1143
+ cu_seqlens: Optional[torch.Tensor] = None,
1144
+ max_seqlen: Optional[int] = None,
1145
+ batch_size: Optional[int] = None,
1146
+ seq_len: Optional[int] = None,
1147
+ output_attentions: Optional[bool] = None,
1148
+ output_hidden_states: Optional[bool] = None,
1149
+ return_dict: Optional[bool] = None,
1150
+ **kwargs,
1151
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1152
+ r"""
1153
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1154
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1155
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1156
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1157
+ """
1158
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1159
+ self._maybe_set_compile()
1160
+
1161
+ outputs = self.model(
1162
+ input_ids,
1163
+ attention_mask=attention_mask,
1164
+ sliding_window_mask=sliding_window_mask,
1165
+ position_ids=position_ids,
1166
+ indices=indices,
1167
+ cu_seqlens=cu_seqlens,
1168
+ max_seqlen=max_seqlen,
1169
+ batch_size=batch_size,
1170
+ seq_len=seq_len,
1171
+ output_attentions=output_attentions,
1172
+ output_hidden_states=output_hidden_states,
1173
+ return_dict=return_dict,
1174
+ )
1175
+ last_hidden_state = outputs[0]
1176
+
1177
+ if self.config.classifier_pooling == "cls":
1178
+ last_hidden_state = last_hidden_state[:, 0]
1179
+ elif self.config.classifier_pooling == "mean":
1180
+ last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
1181
+ dim=1, keepdim=True
1182
+ )
1183
+
1184
+ pooled_output = self.head(last_hidden_state)
1185
+ pooled_output = self.drop(pooled_output)
1186
+ logits = self.classifier(pooled_output)
1187
+
1188
+ loss = None
1189
+ if labels is not None:
1190
+ if self.config.problem_type is None:
1191
+ if self.num_labels == 1:
1192
+ self.config.problem_type = "regression"
1193
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1194
+ self.config.problem_type = "single_label_classification"
1195
+ else:
1196
+ self.config.problem_type = "multi_label_classification"
1197
+
1198
+ if self.config.problem_type == "regression":
1199
+ loss_fct = MSELoss()
1200
+ if self.num_labels == 1:
1201
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1202
+ else:
1203
+ loss = loss_fct(logits, labels)
1204
+ elif self.config.problem_type == "single_label_classification":
1205
+ loss_fct = CrossEntropyLoss()
1206
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1207
+ elif self.config.problem_type == "multi_label_classification":
1208
+ loss_fct = BCEWithLogitsLoss()
1209
+ loss = loss_fct(logits, labels)
1210
+
1211
+ if not return_dict:
1212
+ output = (logits,)
1213
+ return ((loss,) + output) if loss is not None else output
1214
+
1215
+ return SequenceClassifierOutput(
1216
+ loss=loss,
1217
+ logits=logits,
1218
+ hidden_states=outputs.hidden_states,
1219
+ attentions=outputs.attentions,
1220
+ )
1221
+
1222
+
1223
+ @add_start_docstrings(
1224
+ "The ModernBert Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.",
1225
+ MODERNBERT_START_DOCSTRING,
1226
+ )
1227
+ class ModernBertForTokenClassification(ModernBertPreTrainedModel):
1228
+ def __init__(self, config: ModernBertConfig):
1229
+ super().__init__(config)
1230
+ self.num_labels = config.num_labels
1231
+
1232
+ self.model = ModernBertModel(config)
1233
+ self.head = ModernBertPredictionHead(config)
1234
+ self.drop = torch.nn.Dropout(config.classifier_dropout)
1235
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1236
+
1237
+ # Initialize weights and apply final processing
1238
+ self.post_init()
1239
+
1240
+ @add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
1241
+ @add_code_sample_docstrings(
1242
+ checkpoint=_CHECKPOINT_FOR_DOC,
1243
+ output_type=TokenClassifierOutput,
1244
+ config_class=_CONFIG_FOR_DOC,
1245
+ )
1246
+ def forward(
1247
+ self,
1248
+ input_ids: Optional[torch.Tensor],
1249
+ attention_mask: Optional[torch.Tensor] = None,
1250
+ sliding_window_mask: Optional[torch.Tensor] = None,
1251
+ position_ids: Optional[torch.Tensor] = None,
1252
+ labels: Optional[torch.Tensor] = None,
1253
+ indices: Optional[torch.Tensor] = None,
1254
+ cu_seqlens: Optional[torch.Tensor] = None,
1255
+ max_seqlen: Optional[int] = None,
1256
+ batch_size: Optional[int] = None,
1257
+ seq_len: Optional[int] = None,
1258
+ output_attentions: Optional[bool] = None,
1259
+ output_hidden_states: Optional[bool] = None,
1260
+ return_dict: Optional[bool] = None,
1261
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1262
+ r"""
1263
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1264
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1265
+ """
1266
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1267
+ self._maybe_set_compile()
1268
+
1269
+ outputs = self.model(
1270
+ input_ids,
1271
+ attention_mask=attention_mask,
1272
+ sliding_window_mask=sliding_window_mask,
1273
+ position_ids=position_ids,
1274
+ indices=indices,
1275
+ cu_seqlens=cu_seqlens,
1276
+ max_seqlen=max_seqlen,
1277
+ batch_size=batch_size,
1278
+ seq_len=seq_len,
1279
+ output_attentions=output_attentions,
1280
+ output_hidden_states=output_hidden_states,
1281
+ return_dict=return_dict,
1282
+ )
1283
+ last_hidden_state = outputs[0]
1284
+
1285
+ last_hidden_state = self.head(last_hidden_state)
1286
+ last_hidden_state = self.drop(last_hidden_state)
1287
+ logits = self.classifier(last_hidden_state)
1288
+
1289
+ loss = None
1290
+ if labels is not None:
1291
+ loss_fct = CrossEntropyLoss()
1292
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1293
+
1294
+ if not return_dict:
1295
+ output = (logits,) + outputs[1:]
1296
+ return ((loss,) + output) if loss is not None else output
1297
+
1298
+ return TokenClassifierOutput(
1299
+ loss=loss,
1300
+ logits=logits,
1301
+ hidden_states=outputs.hidden_states,
1302
+ attentions=outputs.attentions,
1303
+ )
1304
+
1305
+
1306
+ __all__ = [
1307
+ "ModernBertModel",
1308
+ "ModernBertPreTrainedModel",
1309
+ "ModernBertForMaskedLM",
1310
+ "ModernBertForSequenceClassification",
1311
+ "ModernBertForTokenClassification",
1312
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e97aae0922bf0ea620521f9c72a0fbcd7bace8cf0093216ac391727a42943d2a
3
+ size 643674094
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "extra_special_tokens": {},
50
+ "keep_accents": true,
51
+ "mask_token": "[MASK]",
52
+ "model_input_names": ["input_ids", "attention_mask"],
53
+ "model_max_length": 1000000000000000019884624838656,
54
+ "pad_token": "[PAD]",
55
+ "sep_token": "[SEP]",
56
+ "split_by_punct": true,
57
+ "tokenizer_class": "DebertaV2TokenizerFast",
58
+ "unk_token": "[UNK]"
59
+ }