--- language: - "vi" tags: - "vietnamese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Hai cái đầu thì tốt hơn một" --- # phobert-base-vietnamese-ud-goeswith ## Model Description This is a PhoBERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [phobert-base](https://huggingface.co/vinai/phobert-base). ## How to Use ```py class UDgoeswithViNLP(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification from ViNLP import word_tokenize self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) self.vinlp=word_tokenize def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds t=self.vinlp(text) w=self.tokenizer(t,add_special_tokens=False)["input_ids"] z=[] for i,j in enumerate(t): if j.find("_")>0 and [k for k in w[i] if k==self.tokenizer.unk_token_id]!=[]: w[i]=self.tokenizer(j.replace("_"," "))["input_ids"][1:-1] if [k for k in w[i] if k==self.tokenizer.unk_token_id]!=[]: w[i]=[self.tokenizer.unk_token_id] z.append(j) v=[self.tokenizer.cls_token_id]+sum(w,[])+[self.tokenizer.sep_token_id] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" q=[self.model.config.id2label[p[i,j]].split("|") for i,j in enumerate(h)] t=[i.replace("_"," ") for i in t] if len(t)!=len(v)-2: t=[z.pop(0) if i==self.tokenizer.unk_token else i.replace("_"," ") for i in self.tokenizer.convert_ids_to_tokens(v[1:-1])] for i,j in reversed(list(enumerate(q[2:],2))): if j[-1]=="goeswith" and set([k[-1] for k in q[h[i]+1:i+1]])=={"goeswith"}: h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a] t[i-2]=(t[i-2][0:-2] if t[i-2].endswith("@@") else t[i-2]+" ")+t.pop(i-1) q.pop(i) t=[i[0:-2].strip() if i.endswith("@@") else i.strip() for i in t] for i,j in enumerate(t,1): u+="\t".join([str(i),j,"_",q[i][0],"_","|".join(q[i][1:-1]),str(h[i]),q[i][-1],"_","_"])+"\n" return u+"\n" nlp=UDgoeswithViNLP("KoichiYasuoka/phobert-base-vietnamese-ud-goeswith") print(nlp("Hai cái đầu thì tốt hơn một.")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) and [ViNLP](https://pypi.org/project/ViNLP/). Or without them: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/phobert-base-vietnamese-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("Hai cái đầu thì tốt hơn một.")) ```