Kowshik24 commited on
Commit
ec30895
·
verified ·
1 Parent(s): b20bc7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -1,3 +1,54 @@
1
  ---
2
  license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: text-generation
4
  ---
5
+
6
+ # Bigram Language Model
7
+
8
+ ## Overview
9
+ This repository contains a simple Bigram Language Model implemented in PyTorch. The model is trained to predict the next character in a sequence, given the current character. It's a character-level model and can be used for tasks like text generation.
10
+
11
+ ## Model Details
12
+ - **Model Type**: Character-level Language Model
13
+ - **Architecture**: Simple lookup table for character bigrams
14
+ - **Training Data**: [https://huggingface.co/datasets/csebuetnlp/xlsum/viewer/bengali]
15
+
16
+ ## Requirements
17
+ - Python 3.x
18
+ - PyTorch
19
+ - JSON (for loading the tokenizer)
20
+
21
+ ## Installation
22
+ First, clone this repository:
23
+
24
+
25
+ ## Loading the Model
26
+ To load the model, you need to initialize it with the vocabulary size and load the pre-trained weights:
27
+
28
+ ```python
29
+ import torch
30
+ from model import BigramLanguageModel
31
+
32
+ vocab_size = 225
33
+ model = BigramLanguageModel(vocab_size)
34
+
35
+ model.load_state_dict(torch.load('path_to_your_model.pth', map_location=torch.device('cpu')))
36
+ model.eval()
37
+
38
+ import json
39
+
40
+ with open('tokenizer_mappings.json', 'r', encoding='utf-8') as f:
41
+ mappings = json.load(f)
42
+ stoi = mappings['stoi']
43
+ itos = mappings['itos']
44
+
45
+ # Example usage
46
+ encode = lambda s: [stoi[c] for c in s]
47
+ decode = lambda l: ''.join([itos[i] for i in l])
48
+
49
+
50
+ context = torch.tensor([encode("Your initial text")], dtype=torch.long)
51
+ generated_text_indices = model.generate(context, max_new_tokens=100)
52
+ print(decode(generated_text_indices[0].tolist()))
53
+
54
+