File size: 2,182 Bytes
9545269 a989876 9545269 a989876 9545269 36ffa65 9545269 a989876 9545269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-de
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5620
- Rouge1: 19.3915
- Rouge2: 10.59
- Rougel: 18.7811
- Rougelsum: 18.9784
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.8704 | 1.0 | 651 | 2.5780 | 17.9954 | 9.8425 | 17.421 | 17.5202 |
| 2.8213 | 2.0 | 1302 | 2.5719 | 18.3944 | 9.9329 | 17.8166 | 17.9457 |
| 2.7672 | 3.0 | 1953 | 2.5643 | 17.4605 | 9.7057 | 16.9978 | 17.0939 |
| 2.7311 | 4.0 | 2604 | 2.5633 | 19.5332 | 11.0145 | 19.0127 | 19.1008 |
| 2.6985 | 5.0 | 3255 | 2.5672 | 19.3155 | 10.1678 | 18.6334 | 18.8022 |
| 2.6644 | 6.0 | 3906 | 2.5589 | 19.3282 | 10.3801 | 18.8039 | 18.9073 |
| 2.654 | 7.0 | 4557 | 2.5540 | 19.2307 | 10.4068 | 18.6708 | 18.896 |
| 2.6318 | 8.0 | 5208 | 2.5620 | 19.3915 | 10.59 | 18.7811 | 18.9784 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|