File size: 2,158 Bytes
721f706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-vi
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: my_fine_tuning_opus_mt_en_vi_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_fine_tuning_opus_mt_en_vi_model
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3240
- Bleu: 36.0564
- Gen Len: 28.405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|
| 0.2395 | 1.0 | 16665 | 0.3059 | 36.5417 | 28.4965 |
| 0.2182 | 2.0 | 33330 | 0.3079 | 36.2686 | 28.5296 |
| 0.2072 | 3.0 | 49995 | 0.3105 | 36.4146 | 28.5099 |
| 0.1906 | 4.0 | 66660 | 0.3131 | 36.3594 | 28.4397 |
| 0.1803 | 5.0 | 83325 | 0.3153 | 36.2658 | 28.6052 |
| 0.1738 | 6.0 | 99990 | 0.3182 | 35.9334 | 28.5311 |
| 0.1701 | 7.0 | 116655 | 0.3200 | 36.1934 | 28.4358 |
| 0.1634 | 8.0 | 133320 | 0.3216 | 35.9721 | 28.4358 |
| 0.1605 | 9.0 | 149985 | 0.3233 | 36.2007 | 28.4618 |
| 0.1545 | 10.0 | 166650 | 0.3240 | 36.0564 | 28.405 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.2
|