--- tags: - merge - mergekit - lazymergekit - ecastera/eva-mistral-dolphin-7b-spanish - ecastera/ecastera-eva-westlake-7b-spanish - ecastera/eva-mistral-catmacaroni-7b-spanish - Kukedlc/NeuralSirKrishna-Spanish-FT base_model: - ecastera/eva-mistral-dolphin-7b-spanish - ecastera/ecastera-eva-westlake-7b-spanish - ecastera/eva-mistral-catmacaroni-7b-spanish - Kukedlc/NeuralSirKrishna-Spanish-FT --- # NeuralSpanish-7b-v1 NeuralSpanish-7b-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ecastera/eva-mistral-dolphin-7b-spanish](https://huggingface.co/ecastera/eva-mistral-dolphin-7b-spanish) * [ecastera/ecastera-eva-westlake-7b-spanish](https://huggingface.co/ecastera/ecastera-eva-westlake-7b-spanish) * [ecastera/eva-mistral-catmacaroni-7b-spanish](https://huggingface.co/ecastera/eva-mistral-catmacaroni-7b-spanish) * [Kukedlc/NeuralSirKrishna-Spanish-FT](https://huggingface.co/Kukedlc/NeuralSirKrishna-Spanish-FT) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralSirKrishna-Spanish-FT # no parameters necessary for base model - model: ecastera/eva-mistral-dolphin-7b-spanish parameters: density: 0.65 weight: 0.4 - model: ecastera/ecastera-eva-westlake-7b-spanish parameters: density: 0.6 weight: 0.35 - model: ecastera/eva-mistral-catmacaroni-7b-spanish parameters: density: 0.6 weight: 0.35 - model: Kukedlc/NeuralSirKrishna-Spanish-FT parameters: density: 0.6 weight: 0.35 merge_method: dare_ties base_model: Kukedlc/NeuralSirKrishna-Spanish-FT parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralSpanish-7b-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```