Update README.md
Browse files
README.md
CHANGED
@@ -46,25 +46,35 @@ from transformers import AutoTokenizer
|
|
46 |
import transformers
|
47 |
import torch
|
48 |
|
|
|
49 |
model = "Kumar955/Hemanth-llm"
|
|
|
|
|
|
|
50 |
messages = [{"role": "user", "content": "What is a large language model?"}]
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
|
57 |
-
#
|
58 |
-
prompt =
|
59 |
|
60 |
-
pipeline
|
|
|
61 |
"text-generation",
|
62 |
model=model,
|
63 |
torch_dtype=torch.float16,
|
64 |
device_map="auto",
|
65 |
)
|
66 |
|
|
|
67 |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
|
|
|
|
68 |
print(outputs[0]["generated_text"])
|
69 |
|
|
|
70 |
```
|
|
|
46 |
import transformers
|
47 |
import torch
|
48 |
|
49 |
+
# Load tokenizer and model
|
50 |
model = "Kumar955/Hemanth-llm"
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
52 |
+
|
53 |
+
# Define the messages from the conversation
|
54 |
messages = [{"role": "user", "content": "What is a large language model?"}]
|
55 |
|
56 |
+
# Define the chat template for formatting the conversation
|
57 |
+
chat_template = """<s><|user|>{{ user_message }}<|assistant|>"""
|
58 |
|
59 |
+
# Extract the user message content
|
60 |
+
user_message = messages[0]["content"]
|
61 |
|
62 |
+
# Format the prompt using the chat template
|
63 |
+
prompt = chat_template.replace("{{ user_message }}", user_message)
|
64 |
|
65 |
+
# Load the pipeline with the specified model
|
66 |
+
pipeline = pipeline(
|
67 |
"text-generation",
|
68 |
model=model,
|
69 |
torch_dtype=torch.float16,
|
70 |
device_map="auto",
|
71 |
)
|
72 |
|
73 |
+
# Generate output with the model
|
74 |
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
75 |
+
|
76 |
+
# Print the generated response
|
77 |
print(outputs[0]["generated_text"])
|
78 |
|
79 |
+
|
80 |
```
|