--- library_name: transformers license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-xlnet-large-cased-finetuned-semeval-NT results: [] --- # CS221-xlnet-large-cased-finetuned-semeval-NT This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5455 - F1: 0.7320 - Roc Auc: 0.7940 - Accuracy: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4898 | 1.0 | 277 | 0.4345 | 0.4886 | 0.6537 | 0.3213 | | 0.3807 | 2.0 | 554 | 0.3681 | 0.6681 | 0.7551 | 0.4296 | | 0.265 | 3.0 | 831 | 0.3890 | 0.6765 | 0.7615 | 0.4693 | | 0.1741 | 4.0 | 1108 | 0.4131 | 0.7120 | 0.7878 | 0.4404 | | 0.0835 | 5.0 | 1385 | 0.4718 | 0.7303 | 0.7978 | 0.4765 | | 0.0798 | 6.0 | 1662 | 0.5455 | 0.7320 | 0.7940 | 0.4783 | | 0.0533 | 7.0 | 1939 | 0.6251 | 0.6976 | 0.7679 | 0.4386 | | 0.032 | 8.0 | 2216 | 0.6953 | 0.7158 | 0.7885 | 0.4549 | | 0.0179 | 9.0 | 2493 | 0.7133 | 0.7313 | 0.7984 | 0.4513 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0