--- library_name: transformers license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-xlnet-large-cased-finetuned-semeval-NT results: [] --- # CS221-xlnet-large-cased-finetuned-semeval-NT This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5885 - F1: 0.4593 - Roc Auc: 0.6262 - Accuracy: 0.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.5823 | 1.0 | 277 | 0.5885 | 0.4593 | 0.6262 | 0.1516 | | 0.5409 | 2.0 | 554 | 0.5851 | 0.4593 | 0.6262 | 0.1516 | | 0.5801 | 3.0 | 831 | 0.5811 | 0.4593 | 0.6262 | 0.1516 | | 0.5434 | 4.0 | 1108 | 0.5791 | 0.4593 | 0.6262 | 0.1516 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0