--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7392 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3055 | 0.97 | 7 | 1.2863 | 0.73 | | 1.2903 | 1.93 | 14 | 1.2504 | 0.7 | | 1.2118 | 2.9 | 21 | 1.1450 | 0.77 | | 1.1443 | 4.0 | 29 | 1.1224 | 0.74 | | 1.006 | 4.97 | 36 | 1.0376 | 0.79 | | 1.0174 | 5.93 | 43 | 0.9681 | 0.8 | | 0.9155 | 6.9 | 50 | 0.9322 | 0.81 | | 0.8781 | 8.0 | 58 | 0.9266 | 0.78 | | 0.819 | 8.97 | 65 | 0.8473 | 0.79 | | 0.7984 | 9.93 | 72 | 0.8225 | 0.77 | | 0.7254 | 10.9 | 79 | 0.8096 | 0.81 | | 0.6752 | 12.0 | 87 | 0.7801 | 0.81 | | 0.6132 | 12.97 | 94 | 0.7687 | 0.8 | | 0.615 | 13.93 | 101 | 0.7603 | 0.79 | | 0.6162 | 14.9 | 108 | 0.7599 | 0.82 | | 0.5678 | 16.0 | 116 | 0.7414 | 0.81 | | 0.548 | 16.97 | 123 | 0.7423 | 0.81 | | 0.5495 | 17.93 | 130 | 0.7378 | 0.81 | | 0.5185 | 18.9 | 137 | 0.7396 | 0.81 | | 0.5544 | 19.31 | 140 | 0.7392 | 0.81 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3