Commit
·
018cf2f
1
Parent(s):
0525cfd
Third PPO Lunar Lander V2, increased steps to 1500000
Browse files- README.md +1 -1
- config.json +1 -1
- ppo_mlp_v2.zip +3 -0
- ppo_mlp_v2/_stable_baselines3_version +1 -0
- ppo_mlp_v2/data +94 -0
- ppo_mlp_v2/policy.optimizer.pth +3 -0
- ppo_mlp_v2/policy.pth +3 -0
- ppo_mlp_v2/pytorch_variables.pth +3 -0
- ppo_mlp_v2/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 265.78 +/- 19.01
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86405dfef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86405dff80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86405e6050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86405e60e0>", "_build": "<function ActorCriticPolicy._build at 0x7f86405e6170>", "forward": "<function ActorCriticPolicy.forward at 0x7f86405e6200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86405e6290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86405e6320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86405e63b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86405e6440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86405e64d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8640634450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652162314.4438865, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKP5V77c1kW87q6EO4dYuDmV4qw9uw1OugAAgD8AAIA/ABoBPa4li7oqPEO7H++Ctn9iA7rgWF86AACAPwAAgD/NClK8KbAqupMWVTp3LumzASEOutoAdbkAAIA/AACAP5ppEjsppE66rlSsOzYPezhbuoE7IvRiugAAgD8AAIA/oLCKPvqfcD/DebO9dY7Ovl2XJT7Nfau9AAAAAAAAAACG6kI+m5jSvBgx4blTCk44KVY7vpYQGTkAAIA/AACAP+ZNvT4UBoC8JWiCuvf7qDgq/Ne9MAmqOQAAgD8AAIA/mvMVvuEHxz6Ovpe9F7XIvvk6jr368Ym9AAAAAAAAAABmUxy+BWCMu+uiFLzBLbi5AYEEPZGHsDoAAIA/AACAPx2Vcr5PwLk+bcZOPaNWI776vso9r6a2PQAAAAAAAAAAhvEdvkjf8DvBFQU84vo1urxHgr166C47AACAPwAAgD89rWK+3xzlPHqD6bqOZKk53g19vlG6KzoAAIA/AACAP2YawLvYeK8/GH0evj5m6L5XnNo6T+aRPAAAAAAAAAAA2oZxPhLFiTw4u7C5t7oKuEZWGD7Tbd04AACAPwAAgD9GD4U+VlLxPq3kV751FpS+UQgDvvPQ0b0AAAAAAAAAALMowT1cywG6gt6KO5o3vzZinbM7zpCiugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8wTCTrESYECUhpRSlIwBbJRN6AOMAXSUR0CCyQtJ4B3idX2UKGgGaAloD0MIKSSZ1TvuQkCUhpRSlGgVTegDaBZHQILUE7nxJ/Z1fZQoaAZoCWgPQwiQatjviZU4QJSGlFKUaBVLrGgWR0CDDpua4MF2dX2UKGgGaAloD0MI4NkeveGeV0CUhpRSlGgVTegDaBZHQIMh5b+tKZl1fZQoaAZoCWgPQwjmBG1yeBJkQJSGlFKUaBVN6ANoFkdAgyQm3nZCfHV9lChoBmgJaA9DCBMKEXAIlRVAlIaUUpRoFUvLaBZHQIMsVEw35vd1fZQoaAZoCWgPQwiZ8iGoGkZfQJSGlFKUaBVN6ANoFkdAg0CktdzGP3V9lChoBmgJaA9DCG5oyk4/WmFAlIaUUpRoFU3oA2gWR0CDQxg2qDK6dX2UKGgGaAloD0MIj95wH7nVLsCUhpRSlGgVS8NoFkdAg0oqdQO4G3V9lChoBmgJaA9DCJwWvOir2mNAlIaUUpRoFU3oA2gWR0CDUkcy31BddX2UKGgGaAloD0MI/+bFia+5VECUhpRSlGgVTegDaBZHQINUvR/mT1V1fZQoaAZoCWgPQwgeiCzSxDsNQJSGlFKUaBVL2mgWR0CDYcZwXIludX2UKGgGaAloD0MIFTlE3JwAV0CUhpRSlGgVTegDaBZHQINmgAIY3vR1fZQoaAZoCWgPQwhCCp5CrjVZQJSGlFKUaBVN6ANoFkdAg2c6oVEeAHV9lChoBmgJaA9DCIJ0sWmlIGFAlIaUUpRoFU3oA2gWR0CDahdVNpM6dX2UKGgGaAloD0MIxVimXyJDWkCUhpRSlGgVTegDaBZHQIN6QgNgBtF1fZQoaAZoCWgPQwj9ag4QzJZkQJSGlFKUaBVN6ANoFkdAg3xhXS0BwXV9lChoBmgJaA9DCK6cvTNaHWFAlIaUUpRoFU3oA2gWR0CDfwOuJUHZdX2UKGgGaAloD0MIYoTwaGPLYkCUhpRSlGgVTegDaBZHQIOIwBBAv+R1fZQoaAZoCWgPQwjQ1OsWgV5VQJSGlFKUaBVN6ANoFkdAg4qwpON5t3V9lChoBmgJaA9DCHR7SWM0QGBAlIaUUpRoFU3oA2gWR0CDll5JK8L8dX2UKGgGaAloD0MIl6jeGtiKOUCUhpRSlGgVS8RoFkdAg5i86vJRwnV9lChoBmgJaA9DCJ1KBoAqli9AlIaUUpRoFUulaBZHQIPTxYs/Y8N1fZQoaAZoCWgPQwheDybFx2BWQJSGlFKUaBVN6ANoFkdAg+TNKZlWfnV9lChoBmgJaA9DCHeFPljGXmVAlIaUUpRoFU3oA2gWR0CD5u22oegddX2UKGgGaAloD0MIXmbYKOt1QECUhpRSlGgVS+1oFkdAg/DxiPQv6HV9lChoBmgJaA9DCIVbPpKS2V9AlIaUUpRoFU3oA2gWR0CEBV+2E0zkdX2UKGgGaAloD0MI85Nqn45FTECUhpRSlGgVS9BoFkdAhAlS5iExqXV9lChoBmgJaA9DCBZQqKePZGdAlIaUUpRoFU24AWgWR0CEEB4+KTB7dX2UKGgGaAloD0MIWFUvv1NyYUCUhpRSlGgVTegDaBZHQIQQdUfgaWJ1fZQoaAZoCWgPQwhdGr/wShYzwJSGlFKUaBVL2GgWR0CEFOUHIIWydX2UKGgGaAloD0MI3zXoS28hXkCUhpRSlGgVTegDaBZHQIQZGWa+evp1fZQoaAZoCWgPQwg/V1uxv2hFwJSGlFKUaBVLg2gWR0CEGpm+TNdJdX2UKGgGaAloD0MIsi5uowGkXUCUhpRSlGgVTegDaBZHQIQbonYxtYV1fZQoaAZoCWgPQwiZSj/h7NJeQJSGlFKUaBVN6ANoFkdAhClmsFMZg3V9lChoBmgJaA9DCA5nfjUHkV9AlIaUUpRoFU3oA2gWR0CELcf5DZ13dX2UKGgGaAloD0MIfJ4/bdSzYUCUhpRSlGgVTegDaBZHQIQug3Jgb6x1fZQoaAZoCWgPQwhuisdFtaAgQJSGlFKUaBVL1mgWR0CELx7LMcIadX2UKGgGaAloD0MItcGJ6NckYkCUhpRSlGgVTegDaBZHQIQxT0e2d/d1fZQoaAZoCWgPQwgwoBfuXOJXQJSGlFKUaBVN6ANoFkdAhD/Ec81XNnV9lChoBmgJaA9DCI0KnGwDW2RAlIaUUpRoFU3oA2gWR0CEQdLq2SdOdX2UKGgGaAloD0MINZvHYTDYYkCUhpRSlGgVTegDaBZHQIRPmF36hxp1fZQoaAZoCWgPQwju0RvuI8cfQJSGlFKUaBVLuGgWR0CEWl0HyEtedX2UKGgGaAloD0MIOq3boHbhYUCUhpRSlGgVTegDaBZHQIRlLr/sE7p1fZQoaAZoCWgPQwigbqDAOwdXQJSGlFKUaBVN6ANoFkdAhKo1gQYk3XV9lChoBmgJaA9DCKYJ20/G4FVAlIaUUpRoFU3oA2gWR0CEy1PMSsbOdX2UKGgGaAloD0MIbcg/M4hHT0CUhpRSlGgVTegDaBZHQITSXpKSPlx1fZQoaAZoCWgPQwhtjnObcNFgQJSGlFKUaBVN6ANoFkdAhNcB19v0iHV9lChoBmgJaA9DCP2jb9I0imBAlIaUUpRoFU3oA2gWR0CE2tV7x/d7dX2UKGgGaAloD0MI6ITQQZcbYUCUhpRSlGgVTegDaBZHQITcN45cTrV1fZQoaAZoCWgPQwiKj0/ITkRiQJSGlFKUaBVN6ANoFkdAhN0h6a9bo3V9lChoBmgJaA9DCB6oUx7d3l9AlIaUUpRoFU3oA2gWR0CE6WS5AhStdX2UKGgGaAloD0MItCJqos+zW0CUhpRSlGgVTegDaBZHQITtmwHJLdx1fZQoaAZoCWgPQwiD+MCOf1diQJSGlFKUaBVN6ANoFkdAhO5Illbu+nV9lChoBmgJaA9DCC8X8Z2YqltAlIaUUpRoFU3oA2gWR0CE7tMh5gPVdX2UKGgGaAloD0MIuRYtQNsHY0CUhpRSlGgVTegDaBZHQITwpwQ176Z1fZQoaAZoCWgPQwiOIJViR+85QJSGlFKUaBVLu2gWR0CE8g6mO2iMdX2UKGgGaAloD0MICU/o9SftYkCUhpRSlGgVTegDaBZHQIT9k8q4H5d1fZQoaAZoCWgPQwj2DOGYZc8nQJSGlFKUaBVLv2gWR0CFCJNdqtYCdX2UKGgGaAloD0MIVkj5SbVWWkCUhpRSlGgVTegDaBZHQIUNjv5P/Jh1fZQoaAZoCWgPQwhINlfNc7JYQJSGlFKUaBVN6ANoFkdAhRhbFjurqHV9lChoBmgJaA9DCOwUqwZh7mFAlIaUUpRoFU3oA2gWR0CFI4JXyRSxdX2UKGgGaAloD0MIe90iMNYCWkCUhpRSlGgVTegDaBZHQIVp07yQPqd1fZQoaAZoCWgPQwg9SE+RQ2xcQJSGlFKUaBVN6ANoFkdAhY2hLXcxkHV9lChoBmgJaA9DCOnUlc/ywDFAlIaUUpRoFUvfaBZHQIWN1RYRuj11fZQoaAZoCWgPQwixh/axgipUQJSGlFKUaBVN6ANoFkdAhZTV6E8JU3V9lChoBmgJaA9DCM2Pv7QoxmBAlIaUUpRoFU3oA2gWR0CFmZmthd+odX2UKGgGaAloD0MIGy0HeqhMXkCUhpRSlGgVTegDaBZHQIWe9fPX05F1fZQoaAZoCWgPQwjeVQ+Yhw1hQJSGlFKUaBVN6ANoFkdAhZ/7/wRXfnV9lChoBmgJaA9DCKmfNxWpxkBAlIaUUpRoFUvNaBZHQIWsUZxaPjp1fZQoaAZoCWgPQwhBLJs5JD5jQJSGlFKUaBVN6ANoFkdAhaz+8oQWe3V9lChoBmgJaA9DCK/PnPWpDGFAlIaUUpRoFU3oA2gWR0CFsWnR9gF5dX2UKGgGaAloD0MIB0KygAn6X0CUhpRSlGgVTegDaBZHQIWyIJb+tKZ1fZQoaAZoCWgPQwjLg/QUucRhQJSGlFKUaBVN6ANoFkdAhbKxOUMXrXV9lChoBmgJaA9DCPAxWHGqtWJAlIaUUpRoFU3oA2gWR0CFtHnM+u/2dX2UKGgGaAloD0MILhwIyYKiYkCUhpRSlGgVTegDaBZHQIXCgFzMibF1fZQoaAZoCWgPQwizRdJu9GEdQJSGlFKUaBVLvWgWR0CFyWYWLxZudX2UKGgGaAloD0MIYB3HD5UXV0CUhpRSlGgVTegDaBZHQIXPBK+SKWN1fZQoaAZoCWgPQwjT+lsC8D9MQJSGlFKUaBVN6ANoFkdAhdQcPvrnknV9lChoBmgJaA9DCKq2m+CbaF1AlIaUUpRoFU3oA2gWR0CF3t7iQ1aXdX2UKGgGaAloD0MIUOJzJ9iQakCUhpRSlGgVTZgBaBZHQIXjeE25xzd1fZQoaAZoCWgPQwiSkbOwp3UxQJSGlFKUaBVL8WgWR0CF5OSL61stdX2UKGgGaAloD0MIutv10hSRO0CUhpRSlGgVTegDaBZHQIXpPVqesgd1fZQoaAZoCWgPQwjp76XwoGBRQJSGlFKUaBVN6ANoFkdAhlIckMTewnV9lChoBmgJaA9DCPROBdzz6V9AlIaUUpRoFU3oA2gWR0CGWV+UhV2idX2UKGgGaAloD0MIP/89eO30YkCUhpRSlGgVTegDaBZHQIZeYClrM1V1fZQoaAZoCWgPQwj2JobkZFpbQJSGlFKUaBVN6ANoFkdAhmRFdC3PRnV9lChoBmgJaA9DCCZxVkTNTWFAlIaUUpRoFU3oA2gWR0CGZVmJWNm2dX2UKGgGaAloD0MIE51lFqGcXUCUhpRSlGgVTegDaBZHQIZyNhuwX691fZQoaAZoCWgPQwj8xAH0+6VVQJSGlFKUaBVN6ANoFkdAhneTTWoWHnV9lChoBmgJaA9DCGB0eXO462ZAlIaUUpRoFU3oA2gWR0CGePQfIS13dX2UKGgGaAloD0MIzy7f+rD/XUCUhpRSlGgVTegDaBZHQIZ7McIZ62R1fZQoaAZoCWgPQwjIsfUMYb9lQJSGlFKUaBVN6ANoFkdAhpLVi4J/onV9lChoBmgJaA9DCDcbKzHPdGRAlIaUUpRoFU3oA2gWR0CGmMgTyrggdX2UKGgGaAloD0MI0zJS7ym4YUCUhpRSlGgVTegDaBZHQIaeHiNsFdN1fZQoaAZoCWgPQwiSsdr8vyRQQJSGlFKUaBVN6ANoFkdAhqnLamGdqnV9lChoBmgJaA9DCPZefNEeM2NAlIaUUpRoFU3oA2gWR0CGrruuRs/IdX2UKGgGaAloD0MIMjhKXp3OY0CUhpRSlGgVTegDaBZHQIawQQarFOx1fZQoaAZoCWgPQwhExM2pZORXQJSGlFKUaBVN6ANoFkdAhrS16eGwinV9lChoBmgJaA9DCOmAJOzb6QtAlIaUUpRoFUvoaBZHQIbAdC3PRiR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86405dfef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86405dff80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86405e6050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86405e60e0>", "_build": "<function ActorCriticPolicy._build at 0x7f86405e6170>", "forward": "<function ActorCriticPolicy.forward at 0x7f86405e6200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86405e6290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86405e6320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86405e63b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86405e6440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86405e64d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8640634450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652165325.81375, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDXHL0YseU9inQpPY8PgL7NbyA8DveavQAAAAAAAAAAmulBu9oWiz545gM8xq+xvhRkt7uCj249AAAAAAAAAADNrE48z0FfPvXi7TzZiYa+g90OPRIHEDwAAAAAAAAAAOYRTL3M0hU+71cIPiZFhr7Mmhg9/VbmvAAAAAAAAAAAswClvZL7mTyfqpc6/4VAvo8Y8ryNgGO9AAAAAAAAAAA6HXo+AA9GP17wzjuwn+C+4WtuPnjXPr4AAAAAAAAAAJpzjbwLhUQ/lk2BPR5cm75H7aW6BEaFPQAAAAAAAAAALWA6vkhzOT936D4+bfOivnzVubwq6D89AAAAAAAAAABmqfw8wbSMvIrLXLx3FCM9q5AEPmVs/L0AAIA/AACAP82wqb1KEcA/gAh7vvJVXr5xiOE7KmNMvgAAAAAAAAAAM1RIPdHxgj3ONo477EtdvtaUMTxJ7Sq9AAAAAAAAAAAAv5u8PU90u87FOblmPY88JGKhvIBDdT0AAIA/AACAP83kiTwJqJU+6qOtvJukiL7O3bo8pNgPPAAAAAAAAAAADd36PeNOsj4GRn+9HwpjvpZBpTw65MO8AAAAAAAAAACmPDo+waCjvNs6/LpJsFY5JCQPvuzDJjoAAIA/AACAP41a4z06FAI+46HtvZUscb5Kd82807vZvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBx5IPJUc0CUhpRSlIwBbJRNIwGMAXSUR0C0MnBtYSxrdX2UKGgGaAloD0MIgnFw6djMckCUhpRSlGgVTTcBaBZHQLQyds3Q2Mt1fZQoaAZoCWgPQwi2EyUhEdBxQJSGlFKUaBVNCwFoFkdAtDKF4mkWRHV9lChoBmgJaA9DCDc4Ef3ajXBAlIaUUpRoFU0pAWgWR0C0MqHo9s7/dX2UKGgGaAloD0MIIVfqWRBeSUCUhpRSlGgVS8hoFkdAtDLbBwdbPnV9lChoBmgJaA9DCE3zjlN0wG5AlIaUUpRoFU0YAWgWR0C0Mt+T/yXldX2UKGgGaAloD0MIGoo73qRycECUhpRSlGgVS/1oFkdAtDL8HxBmgHV9lChoBmgJaA9DCEjF/x1RenNAlIaUUpRoFU0XAWgWR0C0Myx/NJOGdX2UKGgGaAloD0MICi5W1GBZckCUhpRSlGgVTQMBaBZHQLQz/aKUFB91fZQoaAZoCWgPQwgVqwZhboxwQJSGlFKUaBVNNwFoFkdAtDQCEGqxT3V9lChoBmgJaA9DCCMVxhaColBAlIaUUpRoFUvGaBZHQLQ0J4bjtHB1fZQoaAZoCWgPQwg8EcR5OP5yQJSGlFKUaBVNMwFoFkdAtDRaPn0TUXV9lChoBmgJaA9DCBjt8UK6eHFAlIaUUpRoFU0NAWgWR0C0NGI3BHkMdX2UKGgGaAloD0MI3uUivlNXckCUhpRSlGgVTUABaBZHQLQ0cp8F6iV1fZQoaAZoCWgPQwhLrIxGvoRtQJSGlFKUaBVL/GgWR0C0NJncQAdXdX2UKGgGaAloD0MI86s5QLAKb0CUhpRSlGgVTQEBaBZHQLQ0xxn3+Mt1fZQoaAZoCWgPQwhUbw1sFUNwQJSGlFKUaBVNIQFoFkdAtDThNnGsFXV9lChoBmgJaA9DCAhYq3YN4XFAlIaUUpRoFUv3aBZHQLQ04+Eh7md1fZQoaAZoCWgPQwgNwXEZd9txQJSGlFKUaBVNCAFoFkdAtDTp/b0voXV9lChoBmgJaA9DCOWXwRjRIHFAlIaUUpRoFU0uAWgWR0C0NRtKZlWfdX2UKGgGaAloD0MI9WkV/SGJcECUhpRSlGgVS/FoFkdAtDU153Tuv3V9lChoBmgJaA9DCOqymNh82W5AlIaUUpRoFU0CAWgWR0C0NTxKpT/AdX2UKGgGaAloD0MI/TBCeDQBbkCUhpRSlGgVTSMBaBZHQLQ1eb48EFJ1fZQoaAZoCWgPQwi6MT1hiTNuQJSGlFKUaBVNHQFoFkdAtDW/d9Dx9XV9lChoBmgJaA9DCATI0LGDmlFAlIaUUpRoFUvdaBZHQLQ1/DYywfR1fZQoaAZoCWgPQwhn74y2Ki9BQJSGlFKUaBVLwGgWR0C0Ng9Zq20BdX2UKGgGaAloD0MIceMW83NVcECUhpRSlGgVTQQBaBZHQLQ2d2Cdz4l1fZQoaAZoCWgPQwiNYU7QZgpzQJSGlFKUaBVNBQFoFkdAtDaf5ylvZXV9lChoBmgJaA9DCF7zqs7q/GxAlIaUUpRoFUv8aBZHQLQ2tHPeHi51fZQoaAZoCWgPQwhNgjekkZdyQJSGlFKUaBVNFAFoFkdAtDcIE3bVSXV9lChoBmgJaA9DCHUBLzNsD3FAlIaUUpRoFU0aAWgWR0C0N0ZjQRf4dX2UKGgGaAloD0MIPZgUH59PcUCUhpRSlGgVTQMBaBZHQLQ3YjlPrOZ1fZQoaAZoCWgPQwiPiZRmc4ttQJSGlFKUaBVNIgFoFkdAtDeOwzLwF3V9lChoBmgJaA9DCPRRRlyAkXBAlIaUUpRoFU0XAWgWR0C0N5Bp5/smdX2UKGgGaAloD0MIcLA3MWQbcECUhpRSlGgVS/5oFkdAtDeTOZ9d/3V9lChoBmgJaA9DCCjXFMhsD3FAlIaUUpRoFU0aAWgWR0C0N5WfseGPdX2UKGgGaAloD0MIP+YDAh3VbUCUhpRSlGgVS/ZoFkdAtDeiKTB68nV9lChoBmgJaA9DCEInhA66e29AlIaUUpRoFU08AWgWR0C0OEEnssxxdX2UKGgGaAloD0MI0HzO3a6CckCUhpRSlGgVS/9oFkdAtDhUFPi1iXV9lChoBmgJaA9DCDZbecl/tXBAlIaUUpRoFU1EAWgWR0C0OK/OpsGgdX2UKGgGaAloD0MIE2IuqRq3cECUhpRSlGgVTQgBaBZHQLQ4tAWi1zB1fZQoaAZoCWgPQwj6ff/mxZlJQJSGlFKUaBVL42gWR0C0ONyrcTJydX2UKGgGaAloD0MIeo8zTdjab0CUhpRSlGgVTQ0BaBZHQLQ5Gq2SdOJ1fZQoaAZoCWgPQwgoEHaKVZNwQJSGlFKUaBVL/mgWR0C0OTRPwd8zdX2UKGgGaAloD0MIcY+lDx1IckCUhpRSlGgVTTcBaBZHQLQ5NKEnLJV1fZQoaAZoCWgPQwi38LxUrOxxQJSGlFKUaBVNGQFoFkdAtECyLiuMdnV9lChoBmgJaA9DCBuDTghddHFAlIaUUpRoFUv1aBZHQLRA1At4A0d1fZQoaAZoCWgPQwgSEf5F0I5xQJSGlFKUaBVNEQFoFkdAtEDZ/8VHnXV9lChoBmgJaA9DCC4dc56xHnJAlIaUUpRoFUv3aBZHQLRA3jghr311fZQoaAZoCWgPQwhRhqqYSmNsQJSGlFKUaBVNBAFoFkdAtEEMOnVG1HV9lChoBmgJaA9DCLYr9MEyNm9AlIaUUpRoFU0OAWgWR0C0QRF9ORDDdX2UKGgGaAloD0MIic4yi5APckCUhpRSlGgVTTsBaBZHQLRBT0k4WDZ1fZQoaAZoCWgPQwhYx/FDpdtyQJSGlFKUaBVL7mgWR0C0QXIfbKzSdX2UKGgGaAloD0MIx/SEJR6WcUCUhpRSlGgVTRoBaBZHQLRB8Nvfj0d1fZQoaAZoCWgPQwhosRTJ129wQJSGlFKUaBVL/2gWR0C0QgWxptaZdX2UKGgGaAloD0MIxXJLq2FBcECUhpRSlGgVTRQBaBZHQLRCP97F85V1fZQoaAZoCWgPQwjvqgfMAzNyQJSGlFKUaBVNCAFoFkdAtEJL5XU6P3V9lChoBmgJaA9DCBmsONVavG5AlIaUUpRoFU0RAWgWR0C0Qr16u4gBdX2UKGgGaAloD0MIL26jATymcECUhpRSlGgVTSABaBZHQLRCyqAjIJZ1fZQoaAZoCWgPQwh/F7ZmK8ZvQJSGlFKUaBVNHAFoFkdAtELaLP2PDHV9lChoBmgJaA9DCJNvtrkxWG5AlIaUUpRoFU0JAWgWR0C0Q0Ly+YdAdX2UKGgGaAloD0MIKc5RR8edP0CUhpRSlGgVS49oFkdAtENyeGwiaHV9lChoBmgJaA9DCIP4wI5/SnJAlIaUUpRoFU0SAWgWR0C0Q3voRqXXdX2UKGgGaAloD0MIWDz1SAO9cECUhpRSlGgVS/1oFkdAtEOBk3CKrXV9lChoBmgJaA9DCNQnucOmSHJAlIaUUpRoFU0bAWgWR0C0Q5YjOcDsdX2UKGgGaAloD0MIzzKLUGwfbUCUhpRSlGgVS/5oFkdAtEPHYNAkcHV9lChoBmgJaA9DCMHJNnCHKnFAlIaUUpRoFU0yAWgWR0C0Q8wnYxtYdX2UKGgGaAloD0MIWaSJd8CQcUCUhpRSlGgVS/loFkdAtEPciu+yq3V9lChoBmgJaA9DCL1uERjrK3FAlIaUUpRoFU0oAWgWR0C0Q+XkT6BRdX2UKGgGaAloD0MIDThLyXKgc0CUhpRSlGgVS/poFkdAtERDX05EMXV9lChoBmgJaA9DCJSJWwVxqHFAlIaUUpRoFU0OAWgWR0C0RLfsE7nxdX2UKGgGaAloD0MIF2L1RxjecECUhpRSlGgVS+JoFkdAtETEjUutfXV9lChoBmgJaA9DCMe8jjgkUnJAlIaUUpRoFU0UAWgWR0C0RNLX6InCdX2UKGgGaAloD0MI4bN1cDDjcECUhpRSlGgVTQgBaBZHQLRFJZpztC11fZQoaAZoCWgPQwiKIqRuZ3FuQJSGlFKUaBVNDAFoFkdAtEXtCF9KEnV9lChoBmgJaA9DCJpfzQEC5m9AlIaUUpRoFU0TAWgWR0C0RfFWXC0odX2UKGgGaAloD0MI1VxuMFS0bkCUhpRSlGgVTSUBaBZHQLRGKS39aU11fZQoaAZoCWgPQwjfwORG0UdzQJSGlFKUaBVNHgFoFkdAtEYz+DOC5HV9lChoBmgJaA9DCLB0PjwLPnBAlIaUUpRoFU1CAWgWR0C0Rjxe9i+ddX2UKGgGaAloD0MIgq59Af0ecUCUhpRSlGgVTQIBaBZHQLRGP4Cp3ot1fZQoaAZoCWgPQwi1TlyOlzRyQJSGlFKUaBVNHQFoFkdAtEZrh3qzJXV9lChoBmgJaA9DCEkRGVZx2m9AlIaUUpRoFU0vAWgWR0C0Ro/tQbdadX2UKGgGaAloD0MIJXhDGpVwbkCUhpRSlGgVS/NoFkdAtEaV8IAwPHV9lChoBmgJaA9DCBFWYwlrDUFAlIaUUpRoFUvcaBZHQLRG1nb7CSB1fZQoaAZoCWgPQwjpuvCDs5VwQJSGlFKUaBVNSQFoFkdAtEbunIhhY3V9lChoBmgJaA9DCPGhREteE3FAlIaUUpRoFU0SAWgWR0C0R17y6MBIdX2UKGgGaAloD0MIAYkmUEThbUCUhpRSlGgVTSsBaBZHQLRHrwqAjIJ1fZQoaAZoCWgPQwhBDkqYaR5kQJSGlFKUaBVN6ANoFkdAtEf3XsgMdHV9lChoBmgJaA9DCLFqEOY2eHFAlIaUUpRoFU0qAWgWR0C0SA5VGTcJdX2UKGgGaAloD0MIev1JfO5eSECUhpRSlGgVS8doFkdAtEgWTQmeDnV9lChoBmgJaA9DCLXdBN+0hW1AlIaUUpRoFUv/aBZHQLRIX5N47ih1fZQoaAZoCWgPQwhfJ/VlKXtwQJSGlFKUaBVL8mgWR0C0SJCsKb8WdX2UKGgGaAloD0MIFoielMnUcECUhpRSlGgVS/ZoFkdAtEiX8uSOinV9lChoBmgJaA9DCDZaDvRQR0ZAlIaUUpRoFUvTaBZHQLRIoKrq+rV1fZQoaAZoCWgPQwhkc9U8R3hOQJSGlFKUaBVL6mgWR0C0SKwIldC3dX2UKGgGaAloD0MIgJpatpbGcECUhpRSlGgVTTQBaBZHQLRI6R9w3o91fZQoaAZoCWgPQwirXRPS2k1yQJSGlFKUaBVNLAFoFkdAtEkH9ehPCXV9lChoBmgJaA9DCNeEtMYgB3FAlIaUUpRoFU0eAWgWR0C0SU0NKAavdX2UKGgGaAloD0MIk6ZB0XwhcUCUhpRSlGgVTQgBaBZHQLRJX2wmmch1fZQoaAZoCWgPQwgAxF29ijJxQJSGlFKUaBVNJAFoFkdAtEm0GX5WR3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_mlp_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f4d21a27d453867c2afc1c0b611a242fc9ee19c850679d9fd1610b7358a895d
|
3 |
+
size 144072
|
ppo_mlp_v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_mlp_v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f86405dfef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86405dff80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86405e6050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86405e60e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f86405e6170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f86405e6200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86405e6290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f86405e6320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86405e63b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86405e6440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86405e64d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8640634450>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652165325.81375,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDXHL0YseU9inQpPY8PgL7NbyA8DveavQAAAAAAAAAAmulBu9oWiz545gM8xq+xvhRkt7uCj249AAAAAAAAAADNrE48z0FfPvXi7TzZiYa+g90OPRIHEDwAAAAAAAAAAOYRTL3M0hU+71cIPiZFhr7Mmhg9/VbmvAAAAAAAAAAAswClvZL7mTyfqpc6/4VAvo8Y8ryNgGO9AAAAAAAAAAA6HXo+AA9GP17wzjuwn+C+4WtuPnjXPr4AAAAAAAAAAJpzjbwLhUQ/lk2BPR5cm75H7aW6BEaFPQAAAAAAAAAALWA6vkhzOT936D4+bfOivnzVubwq6D89AAAAAAAAAABmqfw8wbSMvIrLXLx3FCM9q5AEPmVs/L0AAIA/AACAP82wqb1KEcA/gAh7vvJVXr5xiOE7KmNMvgAAAAAAAAAAM1RIPdHxgj3ONo477EtdvtaUMTxJ7Sq9AAAAAAAAAAAAv5u8PU90u87FOblmPY88JGKhvIBDdT0AAIA/AACAP83kiTwJqJU+6qOtvJukiL7O3bo8pNgPPAAAAAAAAAAADd36PeNOsj4GRn+9HwpjvpZBpTw65MO8AAAAAAAAAACmPDo+waCjvNs6/LpJsFY5JCQPvuzDJjoAAIA/AACAP41a4z06FAI+46HtvZUscb5Kd82807vZvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBx5IPJUc0CUhpRSlIwBbJRNIwGMAXSUR0C0MnBtYSxrdX2UKGgGaAloD0MIgnFw6djMckCUhpRSlGgVTTcBaBZHQLQyds3Q2Mt1fZQoaAZoCWgPQwi2EyUhEdBxQJSGlFKUaBVNCwFoFkdAtDKF4mkWRHV9lChoBmgJaA9DCDc4Ef3ajXBAlIaUUpRoFU0pAWgWR0C0MqHo9s7/dX2UKGgGaAloD0MIIVfqWRBeSUCUhpRSlGgVS8hoFkdAtDLbBwdbPnV9lChoBmgJaA9DCE3zjlN0wG5AlIaUUpRoFU0YAWgWR0C0Mt+T/yXldX2UKGgGaAloD0MIGoo73qRycECUhpRSlGgVS/1oFkdAtDL8HxBmgHV9lChoBmgJaA9DCEjF/x1RenNAlIaUUpRoFU0XAWgWR0C0Myx/NJOGdX2UKGgGaAloD0MICi5W1GBZckCUhpRSlGgVTQMBaBZHQLQz/aKUFB91fZQoaAZoCWgPQwgVqwZhboxwQJSGlFKUaBVNNwFoFkdAtDQCEGqxT3V9lChoBmgJaA9DCCMVxhaColBAlIaUUpRoFUvGaBZHQLQ0J4bjtHB1fZQoaAZoCWgPQwg8EcR5OP5yQJSGlFKUaBVNMwFoFkdAtDRaPn0TUXV9lChoBmgJaA9DCBjt8UK6eHFAlIaUUpRoFU0NAWgWR0C0NGI3BHkMdX2UKGgGaAloD0MI3uUivlNXckCUhpRSlGgVTUABaBZHQLQ0cp8F6iV1fZQoaAZoCWgPQwhLrIxGvoRtQJSGlFKUaBVL/GgWR0C0NJncQAdXdX2UKGgGaAloD0MI86s5QLAKb0CUhpRSlGgVTQEBaBZHQLQ0xxn3+Mt1fZQoaAZoCWgPQwhUbw1sFUNwQJSGlFKUaBVNIQFoFkdAtDThNnGsFXV9lChoBmgJaA9DCAhYq3YN4XFAlIaUUpRoFUv3aBZHQLQ04+Eh7md1fZQoaAZoCWgPQwgNwXEZd9txQJSGlFKUaBVNCAFoFkdAtDTp/b0voXV9lChoBmgJaA9DCOWXwRjRIHFAlIaUUpRoFU0uAWgWR0C0NRtKZlWfdX2UKGgGaAloD0MI9WkV/SGJcECUhpRSlGgVS/FoFkdAtDU153Tuv3V9lChoBmgJaA9DCOqymNh82W5AlIaUUpRoFU0CAWgWR0C0NTxKpT/AdX2UKGgGaAloD0MI/TBCeDQBbkCUhpRSlGgVTSMBaBZHQLQ1eb48EFJ1fZQoaAZoCWgPQwi6MT1hiTNuQJSGlFKUaBVNHQFoFkdAtDW/d9Dx9XV9lChoBmgJaA9DCATI0LGDmlFAlIaUUpRoFUvdaBZHQLQ1/DYywfR1fZQoaAZoCWgPQwhn74y2Ki9BQJSGlFKUaBVLwGgWR0C0Ng9Zq20BdX2UKGgGaAloD0MIceMW83NVcECUhpRSlGgVTQQBaBZHQLQ2d2Cdz4l1fZQoaAZoCWgPQwiNYU7QZgpzQJSGlFKUaBVNBQFoFkdAtDaf5ylvZXV9lChoBmgJaA9DCF7zqs7q/GxAlIaUUpRoFUv8aBZHQLQ2tHPeHi51fZQoaAZoCWgPQwhNgjekkZdyQJSGlFKUaBVNFAFoFkdAtDcIE3bVSXV9lChoBmgJaA9DCHUBLzNsD3FAlIaUUpRoFU0aAWgWR0C0N0ZjQRf4dX2UKGgGaAloD0MIPZgUH59PcUCUhpRSlGgVTQMBaBZHQLQ3YjlPrOZ1fZQoaAZoCWgPQwiPiZRmc4ttQJSGlFKUaBVNIgFoFkdAtDeOwzLwF3V9lChoBmgJaA9DCPRRRlyAkXBAlIaUUpRoFU0XAWgWR0C0N5Bp5/smdX2UKGgGaAloD0MIcLA3MWQbcECUhpRSlGgVS/5oFkdAtDeTOZ9d/3V9lChoBmgJaA9DCCjXFMhsD3FAlIaUUpRoFU0aAWgWR0C0N5WfseGPdX2UKGgGaAloD0MIP+YDAh3VbUCUhpRSlGgVS/ZoFkdAtDeiKTB68nV9lChoBmgJaA9DCEInhA66e29AlIaUUpRoFU08AWgWR0C0OEEnssxxdX2UKGgGaAloD0MI0HzO3a6CckCUhpRSlGgVS/9oFkdAtDhUFPi1iXV9lChoBmgJaA9DCDZbecl/tXBAlIaUUpRoFU1EAWgWR0C0OK/OpsGgdX2UKGgGaAloD0MIE2IuqRq3cECUhpRSlGgVTQgBaBZHQLQ4tAWi1zB1fZQoaAZoCWgPQwj6ff/mxZlJQJSGlFKUaBVL42gWR0C0ONyrcTJydX2UKGgGaAloD0MIeo8zTdjab0CUhpRSlGgVTQ0BaBZHQLQ5Gq2SdOJ1fZQoaAZoCWgPQwgoEHaKVZNwQJSGlFKUaBVL/mgWR0C0OTRPwd8zdX2UKGgGaAloD0MIcY+lDx1IckCUhpRSlGgVTTcBaBZHQLQ5NKEnLJV1fZQoaAZoCWgPQwi38LxUrOxxQJSGlFKUaBVNGQFoFkdAtECyLiuMdnV9lChoBmgJaA9DCBuDTghddHFAlIaUUpRoFUv1aBZHQLRA1At4A0d1fZQoaAZoCWgPQwgSEf5F0I5xQJSGlFKUaBVNEQFoFkdAtEDZ/8VHnXV9lChoBmgJaA9DCC4dc56xHnJAlIaUUpRoFUv3aBZHQLRA3jghr311fZQoaAZoCWgPQwhRhqqYSmNsQJSGlFKUaBVNBAFoFkdAtEEMOnVG1HV9lChoBmgJaA9DCLYr9MEyNm9AlIaUUpRoFU0OAWgWR0C0QRF9ORDDdX2UKGgGaAloD0MIic4yi5APckCUhpRSlGgVTTsBaBZHQLRBT0k4WDZ1fZQoaAZoCWgPQwhYx/FDpdtyQJSGlFKUaBVL7mgWR0C0QXIfbKzSdX2UKGgGaAloD0MIx/SEJR6WcUCUhpRSlGgVTRoBaBZHQLRB8Nvfj0d1fZQoaAZoCWgPQwhosRTJ129wQJSGlFKUaBVL/2gWR0C0QgWxptaZdX2UKGgGaAloD0MIxXJLq2FBcECUhpRSlGgVTRQBaBZHQLRCP97F85V1fZQoaAZoCWgPQwjvqgfMAzNyQJSGlFKUaBVNCAFoFkdAtEJL5XU6P3V9lChoBmgJaA9DCBmsONVavG5AlIaUUpRoFU0RAWgWR0C0Qr16u4gBdX2UKGgGaAloD0MIL26jATymcECUhpRSlGgVTSABaBZHQLRCyqAjIJZ1fZQoaAZoCWgPQwh/F7ZmK8ZvQJSGlFKUaBVNHAFoFkdAtELaLP2PDHV9lChoBmgJaA9DCJNvtrkxWG5AlIaUUpRoFU0JAWgWR0C0Q0Ly+YdAdX2UKGgGaAloD0MIKc5RR8edP0CUhpRSlGgVS49oFkdAtENyeGwiaHV9lChoBmgJaA9DCIP4wI5/SnJAlIaUUpRoFU0SAWgWR0C0Q3voRqXXdX2UKGgGaAloD0MIWDz1SAO9cECUhpRSlGgVS/1oFkdAtEOBk3CKrXV9lChoBmgJaA9DCNQnucOmSHJAlIaUUpRoFU0bAWgWR0C0Q5YjOcDsdX2UKGgGaAloD0MIzzKLUGwfbUCUhpRSlGgVS/5oFkdAtEPHYNAkcHV9lChoBmgJaA9DCMHJNnCHKnFAlIaUUpRoFU0yAWgWR0C0Q8wnYxtYdX2UKGgGaAloD0MIWaSJd8CQcUCUhpRSlGgVS/loFkdAtEPciu+yq3V9lChoBmgJaA9DCL1uERjrK3FAlIaUUpRoFU0oAWgWR0C0Q+XkT6BRdX2UKGgGaAloD0MIDThLyXKgc0CUhpRSlGgVS/poFkdAtERDX05EMXV9lChoBmgJaA9DCJSJWwVxqHFAlIaUUpRoFU0OAWgWR0C0RLfsE7nxdX2UKGgGaAloD0MIF2L1RxjecECUhpRSlGgVS+JoFkdAtETEjUutfXV9lChoBmgJaA9DCMe8jjgkUnJAlIaUUpRoFU0UAWgWR0C0RNLX6InCdX2UKGgGaAloD0MI4bN1cDDjcECUhpRSlGgVTQgBaBZHQLRFJZpztC11fZQoaAZoCWgPQwiKIqRuZ3FuQJSGlFKUaBVNDAFoFkdAtEXtCF9KEnV9lChoBmgJaA9DCJpfzQEC5m9AlIaUUpRoFU0TAWgWR0C0RfFWXC0odX2UKGgGaAloD0MI1VxuMFS0bkCUhpRSlGgVTSUBaBZHQLRGKS39aU11fZQoaAZoCWgPQwjfwORG0UdzQJSGlFKUaBVNHgFoFkdAtEYz+DOC5HV9lChoBmgJaA9DCLB0PjwLPnBAlIaUUpRoFU1CAWgWR0C0Rjxe9i+ddX2UKGgGaAloD0MIgq59Af0ecUCUhpRSlGgVTQIBaBZHQLRGP4Cp3ot1fZQoaAZoCWgPQwi1TlyOlzRyQJSGlFKUaBVNHQFoFkdAtEZrh3qzJXV9lChoBmgJaA9DCEkRGVZx2m9AlIaUUpRoFU0vAWgWR0C0Ro/tQbdadX2UKGgGaAloD0MIJXhDGpVwbkCUhpRSlGgVS/NoFkdAtEaV8IAwPHV9lChoBmgJaA9DCBFWYwlrDUFAlIaUUpRoFUvcaBZHQLRG1nb7CSB1fZQoaAZoCWgPQwjpuvCDs5VwQJSGlFKUaBVNSQFoFkdAtEbunIhhY3V9lChoBmgJaA9DCPGhREteE3FAlIaUUpRoFU0SAWgWR0C0R17y6MBIdX2UKGgGaAloD0MIAYkmUEThbUCUhpRSlGgVTSsBaBZHQLRHrwqAjIJ1fZQoaAZoCWgPQwhBDkqYaR5kQJSGlFKUaBVN6ANoFkdAtEf3XsgMdHV9lChoBmgJaA9DCLFqEOY2eHFAlIaUUpRoFU0qAWgWR0C0SA5VGTcJdX2UKGgGaAloD0MIev1JfO5eSECUhpRSlGgVS8doFkdAtEgWTQmeDnV9lChoBmgJaA9DCLXdBN+0hW1AlIaUUpRoFUv/aBZHQLRIX5N47ih1fZQoaAZoCWgPQwhfJ/VlKXtwQJSGlFKUaBVL8mgWR0C0SJCsKb8WdX2UKGgGaAloD0MIFoielMnUcECUhpRSlGgVS/ZoFkdAtEiX8uSOinV9lChoBmgJaA9DCDZaDvRQR0ZAlIaUUpRoFUvTaBZHQLRIoKrq+rV1fZQoaAZoCWgPQwhkc9U8R3hOQJSGlFKUaBVL6mgWR0C0SKwIldC3dX2UKGgGaAloD0MIgJpatpbGcECUhpRSlGgVTTQBaBZHQLRI6R9w3o91fZQoaAZoCWgPQwirXRPS2k1yQJSGlFKUaBVNLAFoFkdAtEkH9ehPCXV9lChoBmgJaA9DCNeEtMYgB3FAlIaUUpRoFU0eAWgWR0C0SU0NKAavdX2UKGgGaAloD0MIk6ZB0XwhcUCUhpRSlGgVTQgBaBZHQLRJX2wmmch1fZQoaAZoCWgPQwgAxF29ijJxQJSGlFKUaBVNJAFoFkdAtEm0GX5WR3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 368,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_mlp_v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5086309545beb96476fa566b0bc1a9413a5e23e6b8fe2c6fdeecaf39f912b85e
|
3 |
+
size 84893
|
ppo_mlp_v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e90b47f82d9d763982205ae7c4b778a5f28678c2496f3697012c0c96f19eadcb
|
3 |
+
size 43201
|
ppo_mlp_v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_mlp_v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3ec446a984d02d7811d89661c32b6ac42c0cc4f724bb88ed30f61c1eb5c939
|
3 |
+
size 204389
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 265.7837847307414, "std_reward": 19.01026729306095, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T07:24:44.959842"}
|