--- library_name: transformers license: mit datasets: - heegyu/open-korean-instructions language: - ko tags: - Llama-2-7b-hf - LoRA --- # Llama-2 model fine tuning (TREX-Lab at Seoul Cyber University) ## Summary - Base Model : meta-llama/Llama-2-7b-hf - Dataset : heegyu/open-korean-instructions (100%) - Tuning Method - PEFT(Parameter Efficient Fine-Tuning) - LoRA(Low-Rank Adaptation of Large Language Models) - Related Articles : https://arxiv.org/abs/2106.09685 - Fine-tuning the Llama2 model with a random 100% of Korean chatbot data (open Korean instructions) - Test whether fine tuning of a large language model is possible on A30 GPU*1 (successful) - **Developed by:** [TREX-Lab at Seoul Cyber University] - **Language(s) (NLP):** [Korean] - **Finetuned from model :** [meta-llama/Llama-2-7b-hf] ## Fine Tuning Detail - alpha value 16 - r value 64 (it seems a bit big...@@) ``` peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias='none', task_type='CAUSAL_LM' ) ``` - Mixed precision : 4bit (bnb_4bit_use_double_quant) ``` bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype='float16', ) ``` - Use SFT trainer (https://huggingface.co/docs/trl/sft_trainer) ``` trainer = SFTTrainer( model=peft_model, train_dataset=dataset, dataset_text_field='text', max_seq_length=min(tokenizer.model_max_length, 2048), tokenizer=tokenizer, packing=True, args=training_args ) ``` ### Train Result ``` time taken : executed in 2d 0h 17m ``` ``` TrainOutput(global_step=2001, training_loss=0.6940358212922347, metrics={ 'train_runtime': 173852.2333, 'train_samples_per_second': 0.092, 'train_steps_per_second': 0.012, 'train_loss': 0.6940358212922347, 'epoch': 3.0}) ```