LKriesch commited on
Commit
e2643fc
·
verified ·
1 Parent(s): 334e0f5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -130
README.md CHANGED
@@ -1,131 +1,133 @@
1
- ---
2
- base_model: intfloat/multilingual-e5-large
3
- library_name: setfit
4
- metrics:
5
- - accuracy
6
- pipeline_tag: text-classification
7
- tags:
8
- - setfit
9
- - sentence-transformers
10
- - text-classification
11
- - generated_from_setfit_trainer
12
- widget: []
13
- inference: true
14
- ---
15
-
16
- # SetFit with intfloat/multilingual-e5-large
17
-
18
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
-
20
- The model has been trained using an efficient few-shot learning technique that involves:
21
-
22
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
-
25
- ## Model Details
26
-
27
- ### Model Description
28
- - **Model Type:** SetFit
29
- - **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
30
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
- - **Maximum Sequence Length:** 512 tokens
32
- <!-- - **Number of Classes:** Unknown -->
33
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
- <!-- - **Language:** Unknown -->
35
- <!-- - **License:** Unknown -->
36
-
37
- ### Model Sources
38
-
39
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
-
43
- ## Uses
44
-
45
- ### Direct Use for Inference
46
-
47
- First install the SetFit library:
48
-
49
- ```bash
50
- pip install setfit
51
- ```
52
-
53
- Then you can load this model and run inference.
54
-
55
- ```python
56
- from setfit import SetFitModel
57
-
58
- # Download from the 🤗 Hub
59
- model = SetFitModel.from_pretrained("LKriesch/TwinTransitionMapper_AI")
60
- # Run inference
61
- preds = model("I loved the spiderman movie!")
62
- ```
63
-
64
- <!--
65
- ### Downstream Use
66
-
67
- *List how someone could finetune this model on their own dataset.*
68
- -->
69
-
70
- <!--
71
- ### Out-of-Scope Use
72
-
73
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
74
- -->
75
-
76
- <!--
77
- ## Bias, Risks and Limitations
78
-
79
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
80
- -->
81
-
82
- <!--
83
- ### Recommendations
84
-
85
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
86
- -->
87
-
88
- ## Training Details
89
-
90
- ### Framework Versions
91
- - Python: 3.9.19
92
- - SetFit: 1.0.3
93
- - Sentence Transformers: 3.0.1
94
- - Transformers: 4.44.0
95
- - PyTorch: 2.4.0+cu124
96
- - Datasets: 2.16.1
97
- - Tokenizers: 0.19.1
98
-
99
- ## Citation
100
-
101
- ### BibTeX
102
- ```bibtex
103
- @article{https://doi.org/10.48550/arxiv.2209.11055,
104
- doi = {10.48550/ARXIV.2209.11055},
105
- url = {https://arxiv.org/abs/2209.11055},
106
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
107
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
108
- title = {Efficient Few-Shot Learning Without Prompts},
109
- publisher = {arXiv},
110
- year = {2022},
111
- copyright = {Creative Commons Attribution 4.0 International}
112
- }
113
- ```
114
-
115
- <!--
116
- ## Glossary
117
-
118
- *Clearly define terms in order to be accessible across audiences.*
119
- -->
120
-
121
- <!--
122
- ## Model Card Authors
123
-
124
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
- -->
126
-
127
- <!--
128
- ## Model Card Contact
129
-
130
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
 
 
131
  -->
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-large
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget: []
13
+ inference: true
14
+ ---
15
+
16
+ # TwinTransitionMapper_AI
17
+
18
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
+
20
+ The model has been trained using an efficient few-shot learning technique that involves:
21
+
22
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
+
25
+ The model is designed to predict the AI capabilities of German companies based on their website texts. It is intended to be used in conjunction with the Twin_Transition_Mapper_Green model to identify companies contributing to the twin transition in Germany. For detailed information on the fine-tuning process and the results of these models, please refer to: [LINK TO WORKING PAPER]
26
+
27
+ ## Model Details
28
+
29
+ ### Model Description
30
+ - **Model Type:** SetFit
31
+ - **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
32
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
33
+ - **Maximum Sequence Length:** 512 tokens
34
+ <!-- - **Number of Classes:** Unknown -->
35
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
36
+ <!-- - **Language:** Unknown -->
37
+ <!-- - **License:** Unknown -->
38
+
39
+ ### Model Sources
40
+
41
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
42
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
43
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
44
+
45
+ ## Uses
46
+
47
+ ### Direct Use for Inference
48
+
49
+ First install the SetFit library:
50
+
51
+ ```bash
52
+ pip install setfit
53
+ ```
54
+
55
+ Then you can load this model and run inference.
56
+
57
+ ```python
58
+ from setfit import SetFitModel
59
+
60
+ # Download from the 🤗 Hub
61
+ model = SetFitModel.from_pretrained("LKriesch/TwinTransitionMapper_AI")
62
+ # Run inference
63
+ preds = model("I loved the spiderman movie!")
64
+ ```
65
+
66
+ <!--
67
+ ### Downstream Use
68
+
69
+ *List how someone could finetune this model on their own dataset.*
70
+ -->
71
+
72
+ <!--
73
+ ### Out-of-Scope Use
74
+
75
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
76
+ -->
77
+
78
+ <!--
79
+ ## Bias, Risks and Limitations
80
+
81
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
82
+ -->
83
+
84
+ <!--
85
+ ### Recommendations
86
+
87
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
88
+ -->
89
+
90
+ ## Training Details
91
+
92
+ ### Framework Versions
93
+ - Python: 3.9.19
94
+ - SetFit: 1.0.3
95
+ - Sentence Transformers: 3.0.1
96
+ - Transformers: 4.44.0
97
+ - PyTorch: 2.4.0+cu124
98
+ - Datasets: 2.16.1
99
+ - Tokenizers: 0.19.1
100
+
101
+ ## Citation
102
+
103
+ ### BibTeX
104
+ ```bibtex
105
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
106
+ doi = {10.48550/ARXIV.2209.11055},
107
+ url = {https://arxiv.org/abs/2209.11055},
108
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
109
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
110
+ title = {Efficient Few-Shot Learning Without Prompts},
111
+ publisher = {arXiv},
112
+ year = {2022},
113
+ copyright = {Creative Commons Attribution 4.0 International}
114
+ }
115
+ ```
116
+
117
+ <!--
118
+ ## Glossary
119
+
120
+ *Clearly define terms in order to be accessible across audiences.*
121
+ -->
122
+
123
+ <!--
124
+ ## Model Card Authors
125
+
126
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
127
+ -->
128
+
129
+ <!--
130
+ ## Model Card Contact
131
+
132
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
133
  -->