LKriesch commited on
Commit
7bac20a
·
verified ·
1 Parent(s): 466ed48

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -129
README.md CHANGED
@@ -1,130 +1,132 @@
1
- ---
2
- library_name: setfit
3
- metrics:
4
- - accuracy
5
- pipeline_tag: text-classification
6
- tags:
7
- - setfit
8
- - sentence-transformers
9
- - text-classification
10
- - generated_from_setfit_trainer
11
- widget: []
12
- inference: true
13
- ---
14
-
15
- # SetFit
16
-
17
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
18
-
19
- The model has been trained using an efficient few-shot learning technique that involves:
20
-
21
- 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
22
- 2. Training a classification head with features from the fine-tuned Sentence Transformer.
23
-
24
- ## Model Details
25
-
26
- ### Model Description
27
- - **Model Type:** SetFit
28
- <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
29
- - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
30
- - **Maximum Sequence Length:** 512 tokens
31
- <!-- - **Number of Classes:** Unknown -->
32
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
33
- <!-- - **Language:** Unknown -->
34
- <!-- - **License:** Unknown -->
35
-
36
- ### Model Sources
37
-
38
- - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
39
- - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
40
- - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
41
-
42
- ## Uses
43
-
44
- ### Direct Use for Inference
45
-
46
- First install the SetFit library:
47
-
48
- ```bash
49
- pip install setfit
50
- ```
51
-
52
- Then you can load this model and run inference.
53
-
54
- ```python
55
- from setfit import SetFitModel
56
-
57
- # Download from the 🤗 Hub
58
- model = SetFitModel.from_pretrained("LKriesch/TwinTransitionMapper_Green")
59
- # Run inference
60
- preds = model("I loved the spiderman movie!")
61
- ```
62
-
63
- <!--
64
- ### Downstream Use
65
-
66
- *List how someone could finetune this model on their own dataset.*
67
- -->
68
-
69
- <!--
70
- ### Out-of-Scope Use
71
-
72
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
73
- -->
74
-
75
- <!--
76
- ## Bias, Risks and Limitations
77
-
78
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
79
- -->
80
-
81
- <!--
82
- ### Recommendations
83
-
84
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
85
- -->
86
-
87
- ## Training Details
88
-
89
- ### Framework Versions
90
- - Python: 3.9.19
91
- - SetFit: 1.0.3
92
- - Sentence Transformers: 3.0.1
93
- - Transformers: 4.44.0
94
- - PyTorch: 2.4.0+cu124
95
- - Datasets: 2.16.1
96
- - Tokenizers: 0.19.1
97
-
98
- ## Citation
99
-
100
- ### BibTeX
101
- ```bibtex
102
- @article{https://doi.org/10.48550/arxiv.2209.11055,
103
- doi = {10.48550/ARXIV.2209.11055},
104
- url = {https://arxiv.org/abs/2209.11055},
105
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
106
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
107
- title = {Efficient Few-Shot Learning Without Prompts},
108
- publisher = {arXiv},
109
- year = {2022},
110
- copyright = {Creative Commons Attribution 4.0 International}
111
- }
112
- ```
113
-
114
- <!--
115
- ## Glossary
116
-
117
- *Clearly define terms in order to be accessible across audiences.*
118
- -->
119
-
120
- <!--
121
- ## Model Card Authors
122
-
123
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
124
- -->
125
-
126
- <!--
127
- ## Model Card Contact
128
-
129
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
 
 
130
  -->
 
1
+ ---
2
+ library_name: setfit
3
+ metrics:
4
+ - accuracy
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - setfit
8
+ - sentence-transformers
9
+ - text-classification
10
+ - generated_from_setfit_trainer
11
+ widget: []
12
+ inference: true
13
+ license: apache-2.0
14
+ base_model: intfloat/multilingual-e5-large
15
+ ---
16
+
17
+ # SetFit
18
+
19
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
20
+
21
+ The model has been trained on paragraphs from German company websites using an efficient few-shot learning technique that involves:
22
+
23
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
24
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
25
+
26
+ The model is designed to predict the AI capabilities of German companies based on their website texts. It is intended to be used in conjunction with the [https://huggingface.co/LKriesch/TwinTransitionMapper_AI] model to identify companies contributing to the twin transition in Germany. For detailed information on the fine-tuning process and the results of these models, please refer to: [LINK TO WORKING PAPER]
27
+
28
+ ### Model Description
29
+ - **Model Type:** SetFit
30
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
31
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
32
+ - **Maximum Sequence Length:** 512 tokens
33
+ <!-- - **Number of Classes:** Unknown -->
34
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
35
+ <!-- - **Language:** Unknown -->
36
+ <!-- - **License:** Unknown -->
37
+
38
+ ### Model Sources
39
+
40
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
41
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
42
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
43
+
44
+ ## Uses
45
+
46
+ ### Direct Use for Inference
47
+
48
+ First install the SetFit library:
49
+
50
+ ```bash
51
+ pip install setfit
52
+ ```
53
+
54
+ Then you can load this model and run inference.
55
+
56
+ ```python
57
+ from setfit import SetFitModel
58
+
59
+ # Download from the 🤗 Hub
60
+ model = SetFitModel.from_pretrained("LKriesch/TwinTransitionMapper_Green")
61
+ # Run inference
62
+ preds = model("I loved the spiderman movie!")
63
+ ```
64
+
65
+ <!--
66
+ ### Downstream Use
67
+
68
+ *List how someone could finetune this model on their own dataset.*
69
+ -->
70
+
71
+ <!--
72
+ ### Out-of-Scope Use
73
+
74
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
75
+ -->
76
+
77
+ <!--
78
+ ## Bias, Risks and Limitations
79
+
80
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
81
+ -->
82
+
83
+ <!--
84
+ ### Recommendations
85
+
86
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
87
+ -->
88
+
89
+ ## Training Details
90
+
91
+ ### Framework Versions
92
+ - Python: 3.9.19
93
+ - SetFit: 1.0.3
94
+ - Sentence Transformers: 3.0.1
95
+ - Transformers: 4.44.0
96
+ - PyTorch: 2.4.0+cu124
97
+ - Datasets: 2.16.1
98
+ - Tokenizers: 0.19.1
99
+
100
+ ## Citation
101
+
102
+ ### BibTeX
103
+ ```bibtex
104
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
105
+ doi = {10.48550/ARXIV.2209.11055},
106
+ url = {https://arxiv.org/abs/2209.11055},
107
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
108
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
109
+ title = {Efficient Few-Shot Learning Without Prompts},
110
+ publisher = {arXiv},
111
+ year = {2022},
112
+ copyright = {Creative Commons Attribution 4.0 International}
113
+ }
114
+ ```
115
+
116
+ <!--
117
+ ## Glossary
118
+
119
+ *Clearly define terms in order to be accessible across audiences.*
120
+ -->
121
+
122
+ <!--
123
+ ## Model Card Authors
124
+
125
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
126
+ -->
127
+
128
+ <!--
129
+ ## Model Card Contact
130
+
131
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
132
  -->