File size: 6,427 Bytes
36c5dd8 1c1fbe8 36c5dd8 2cef59c 1c1fbe8 2cef59c 072a2d4 2cef59c 1c1fbe8 6906a66 1c1fbe8 3420c8a aa9df8d 2cef59c aa9df8d 8a7d167 fe01884 8a7d167 407f850 0ae9d99 407f850 0ae9d99 407f850 8a7d167 407f850 0ae9d99 bfa3f60 1c1fbe8 2cef59c 9b907ca 2ef47fe a5b96ac 4971eab 1c1fbe8 7c8f87a 1c1fbe8 2cef59c 1c1fbe8 8fec02f 1c1fbe8 d9f3feb 1c1fbe8 d9f3feb 1c1fbe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- nlp
- llm
---
# K2: a Fully Reproducible Large Language Model Outperforming Llama 2 70B using 35% less compute
LLM360 demystifies the training recipe used for Llama 2 - 70B with K2.
About K2:
- 65 billion parameter LLM
- Tokens: 1.4T
* Languages: English
* Models Released: base, chat model
* Trained in 2 stages
* License: Apache 2.0
K2 was developed as a collaboration between [MBZUAI](https://mbzuai.ac.ae/institute-of-foundation-models/), [Petuum](petuum.com), and [LLM360](llm360.ai).
## LLM360 Model Performance and Evaluation Collection
The LLM360 Performance and Evaluation Collection is a robust evaluations set consisting of general and domain specific evaluations to assess model knowledge and function. Evaluations include standard best practice benchmarks, medical, math, and coding knowledge. More about the evaluations can be found [here](llm360.ai/evaluations).
put the general table in here
Detailed analysis can be found on the K2 Weights and Biases project [here](wandb.ai)
view the prompt gallery here - Detailed analysis can be found on the K2 Weights and Biases project [here](wandb.ai)
## Datasets and Mix
The following data mix was used to train K2 and achieve results in line with Llama 2 70B.
The full data sequence can be found [here](https://huggingface.co/datasets/LLM360/K2Datasets/tree/main)
| Dataset | Starting Tokens | Multiplier | Total Tokens |% of Total |
| ----------- | ----------- | ----------- | ----------- | ----------- |
| dm-math | 4.33B | 3x | 13B | 1% |
| pubmed-abstracts | 4.77B | 3x | 14.3B | 1.1% |
| uspto | 4.77B | 3x | 14.3B | 1.1% |
| pubmed-central | 26B | 1x | 26B | 2% |
| [redpajama.arxiv](https://huggingface.co/datasets/cerebras/SlimPajama-627B) | 27.3B | 1x | 27.3B | 2.1% |
| [starcoder.spm](https://huggingface.co/datasets/bigcode/starcoderdata) | 67.6B | 0.5x | 33.8B | 2.6% |
| [starcoder.fim](https://huggingface.co/datasets/bigcode/starcoderdata) | 67.6B | 0.5x | 33.8B | 2.6% |
| [redpajama.stackexchange](https://huggingface.co/datasets/cerebras/SlimPajama-627B) | 61.1B | 1x | 61.1B | 4.7% |
| [starcoder](https://huggingface.co/datasets/bigcode/starcoderdata) | 132.6B | 0.5x | 66.3B | 5.1% |
| [pile-of-law](https://huggingface.co/datasets/pile-of-law/pile-of-law) | 76.7B | 1x | 76.7B | 5.9% |
| [redpajama.book](https://huggingface.co/datasets/cerebras/SlimPajama-627B) | 80.6B | 1x | 80.6B | 6.2% |
| s2orc | 107.9B | 1x | 107.9B | 8.3% |
| [redpajama.wikipedia](https://huggingface.co/datasets/cerebras/SlimPajama-627B) | 22.1B | 6x | 132.6B | 10.2% |
| [refinedweb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 612.3B | 1x | 612.3B | 47.1% |
| Totals | - | - | 1.3T | 100% |
# LLM360 Reasearch Suite
## Stage 2 - Last 10 Checkpoints
| Checkpoints | |
| ----------- | ----------- |
| [Checkpoint 380](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_380) | [Checkpoint 375](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_375) |
| [Checkpoint 379](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_379) | [Checkpoint 374](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_374) |
| [Checkpoint 378](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_378) | [Checkpoint 373](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_373) |
| [Checkpoint 377](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_377) | [Checkpoint 372](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_372) |
| [Checkpoint 376](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_376) | [Checkpoint 371](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_371) |
## Stage 1 - Last 10 Checkpoints
| Checkpoints | |
| ----------- | ----------- |
| [Checkpoint 360](https://huggingface.co/LLM360/K2/tree/ckpt_360) | [Checkpoint 355](https://huggingface.co/LLM360/K2/tree/ckpt_355) |
| [Checkpoint 359](https://huggingface.co/LLM360/K2/tree/ckpt_359) | [Checkpoint 354](https://huggingface.co/LLM360/K2/tree/ckpt_354) |
| [Checkpoint 358](https://huggingface.co/LLM360/K2/tree/ckpt_358) | [Checkpoint 353](https://huggingface.co/LLM360/K2/tree/ckpt_353) |
| [Checkpoint 357](https://huggingface.co/LLM360/K2/tree/ckpt_357) | [Checkpoint 352](https://huggingface.co/LLM360/K2/tree/ckpt_352) |
| [Checkpoint 356](https://huggingface.co/LLM360/K2/tree/ckpt_356) | [Checkpoint 351](https://huggingface.co/LLM360/K2/tree/ckpt_351) |
[to find all branches: git branch -a]
## LLM360 Pretraining Suite
We provide step-by-step reproducation tutorials for tech enthusiasts, AI practitioners and academic or industry researchers who want to learn pretraining techniques here [llm360.ai/pretraining]
## LLM360 Developer Suite
We provide step-by-step finetuning tutorials for tech enthusiasts, AI practitioners and academic or industry researchers here [llm360.ai/pretraining].
#Put inference section here.
## Model Description
- **Model type:** 65 billion parameter language model with the same architecture as LLaMA.
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
- Training Code: TBD
- Data Preparation: TBD
- Metrics: TBD
- Fully processed K2 pretraining dataset: TBD
## About LLM360
LLM360 is an initiative for comprehensive and fully open-sourced LLMs,
where all training details, model checkpoints, intermediate results, and
additional analyses are made available to the community. Our goal is to advance
the field by inviting the community to deepen the understanding of LLMs
together. As the first step of the project LLM360, we release all intermediate
model checkpoints, our fully-prepared pre-training dataset, all source code and
configurations, and training details. We are
committed to continually pushing the boundaries of LLMs through this open-source
effort.
[Visit us](https://www.llm360.ai/)
|