File size: 6,427 Bytes
36c5dd8
 
1c1fbe8
 
 
 
 
 
 
36c5dd8
2cef59c
1c1fbe8
2cef59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1fbe8
6906a66
 
1c1fbe8
3420c8a
aa9df8d
2cef59c
 
 
aa9df8d
8a7d167
fe01884
8a7d167
 
 
 
407f850
0ae9d99
 
407f850
0ae9d99
 
407f850
8a7d167
407f850
0ae9d99
bfa3f60
1c1fbe8
2cef59c
 
 
 
 
 
 
 
 
 
 
 
 
9b907ca
2ef47fe
a5b96ac
 
 
 
4971eab
1c1fbe8
7c8f87a
1c1fbe8
2cef59c
 
 
 
 
 
 
1c1fbe8
 
8fec02f
1c1fbe8
d9f3feb
1c1fbe8
 
 
d9f3feb
 
 
 
1c1fbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- nlp
- llm
---
# K2: a Fully Reproducible Large Language Model Outperforming Llama 2 70B using 35% less compute

LLM360 demystifies the training recipe used for Llama 2 - 70B with K2.

About K2:
* 65 billion parameter LLM
* Tokens: 1.4T
* Languages: English
* Models Released: base, chat model
* Trained in 2 stages
* License: Apache 2.0

K2 was developed as a collaboration between [MBZUAI](https://mbzuai.ac.ae/institute-of-foundation-models/), [Petuum](petuum.com), and [LLM360](llm360.ai).

## LLM360 Model Performance and Evaluation Collection

The LLM360 Performance and Evaluation Collection is a robust evaluations set consisting of general and domain specific evaluations to assess model knowledge and function. Evaluations include standard best practice benchmarks, medical, math, and coding knowledge. More about the evaluations can be found [here](llm360.ai/evaluations).

put the general table in here

Detailed analysis can be found on the K2 Weights and Biases project [here](wandb.ai)

view the prompt gallery here - Detailed analysis can be found on the K2 Weights and Biases project [here](wandb.ai)


## Datasets and Mix

The following data mix was used to train K2 and achieve results in line with Llama 2 70B. 

The full data sequence can be found [here](https://huggingface.co/datasets/LLM360/K2Datasets/tree/main) 

| Dataset      | Starting Tokens      | Multiplier      | Total Tokens      |% of Total      |
| ----------- | ----------- | ----------- | ----------- | ----------- |
| dm-math   | 4.33B        | 3x       | 13B       | 1%       |
| pubmed-abstracts   | 4.77B        | 3x       | 14.3B       | 1.1%       |
| uspto   | 4.77B        | 3x       | 14.3B       | 1.1%       |
| pubmed-central   | 26B        | 1x       | 26B       | 2%       |
| [redpajama.arxiv](https://huggingface.co/datasets/cerebras/SlimPajama-627B)   | 27.3B        | 1x       | 27.3B       | 2.1%       |
| [starcoder.spm](https://huggingface.co/datasets/bigcode/starcoderdata)   | 67.6B        | 0.5x       | 33.8B       | 2.6%       |
| [starcoder.fim](https://huggingface.co/datasets/bigcode/starcoderdata)   | 67.6B        | 0.5x       | 33.8B       | 2.6%       |
| [redpajama.stackexchange](https://huggingface.co/datasets/cerebras/SlimPajama-627B)   | 61.1B        | 1x       | 61.1B       | 4.7%       |
| [starcoder](https://huggingface.co/datasets/bigcode/starcoderdata)   | 132.6B        | 0.5x       | 66.3B       | 5.1%       |
| [pile-of-law](https://huggingface.co/datasets/pile-of-law/pile-of-law)   | 76.7B        | 1x       | 76.7B       | 5.9%       |
| [redpajama.book](https://huggingface.co/datasets/cerebras/SlimPajama-627B)   | 80.6B        | 1x       | 80.6B       | 6.2%       |
| s2orc   | 107.9B        | 1x       | 107.9B       | 8.3%       |
| [redpajama.wikipedia](https://huggingface.co/datasets/cerebras/SlimPajama-627B)   | 22.1B        | 6x       | 132.6B       | 10.2%       |
| [refinedweb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)   | 612.3B        | 1x       | 612.3B       | 47.1%       |
| Totals   | -        | -       | 1.3T       | 100%       |


# LLM360 Reasearch Suite

## Stage 2 - Last 10 Checkpoints
| Checkpoints      |  |
| ----------- | ----------- |
| [Checkpoint 380](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_380)     | [Checkpoint 375](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_375)       |
| [Checkpoint 379](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_379)   | [Checkpoint 374](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_374)        |
| [Checkpoint 378](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_378)   | [Checkpoint 373](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_373)        |
| [Checkpoint 377](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_377)   | [Checkpoint 372](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_372)        |
| [Checkpoint 376](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_376)   | [Checkpoint 371](https://huggingface.co/LLM360/K2/tree/ministage2_ckpt_371)        |

## Stage 1 - Last 10 Checkpoints
| Checkpoints      |  |
| ----------- | ----------- |
| [Checkpoint 360](https://huggingface.co/LLM360/K2/tree/ckpt_360)     | [Checkpoint 355](https://huggingface.co/LLM360/K2/tree/ckpt_355)       |
| [Checkpoint 359](https://huggingface.co/LLM360/K2/tree/ckpt_359)   | [Checkpoint 354](https://huggingface.co/LLM360/K2/tree/ckpt_354)        |
| [Checkpoint 358](https://huggingface.co/LLM360/K2/tree/ckpt_358)   | [Checkpoint 353](https://huggingface.co/LLM360/K2/tree/ckpt_353)        |
| [Checkpoint 357](https://huggingface.co/LLM360/K2/tree/ckpt_357)   | [Checkpoint 352](https://huggingface.co/LLM360/K2/tree/ckpt_352)        |
| [Checkpoint 356](https://huggingface.co/LLM360/K2/tree/ckpt_356)   | [Checkpoint 351](https://huggingface.co/LLM360/K2/tree/ckpt_351)        |

[to find all branches: git branch -a]

## LLM360 Pretraining Suite
We provide step-by-step reproducation tutorials for tech enthusiasts, AI practitioners and academic or industry researchers who want to learn pretraining techniques here [llm360.ai/pretraining]

## LLM360 Developer Suite
We provide step-by-step finetuning tutorials for tech enthusiasts, AI practitioners and academic or industry researchers here [llm360.ai/pretraining].

#Put inference section here.


## Model Description

- **Model type:** 65 billion parameter language model with the same architecture as LLaMA.
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
  - Training Code: TBD
  - Data Preparation: TBD
  - Metrics: TBD
  - Fully processed K2 pretraining dataset: TBD


## About LLM360
LLM360 is an initiative for comprehensive and fully open-sourced LLMs, 
where all training details, model checkpoints, intermediate results, and 
additional analyses are made available to the community. Our goal is to advance 
the field by inviting the community to deepen the understanding of LLMs 
together. As the first step of the project LLM360, we release all intermediate 
model checkpoints, our fully-prepared pre-training dataset, all source code and
configurations, and training details. We are
committed to continually pushing the boundaries of LLMs through this open-source 
effort.

[Visit us](https://www.llm360.ai/)