--- license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - generated_from_trainer datasets: - squad - newsqa - LLukas22/cqadupstack - LLukas22/fiqa - LLukas22/scidocs - deepset/germanquad - LLukas22/nq language: - en --- # all-mpnet-base-v2-embedding-all This model is a fine-tuned version of [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('LLukas22/all-mpnet-base-v2-embedding-all') embeddings = model.encode(sentences) print(embeddings) ``` ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1E+00 - per device batch size: 60 - effective batch size: 180 - seed: 42 - optimizer: AdamW with betas (0.9,0.999) and eps 1E-08 - weight decay: 2E-02 - D-Adaptation: True - Warmup: True - number of epochs: 15 - mixed_precision_training: bf16 ## Training results | Epoch | Train Loss | Validation Loss | | ----- | ---------- | --------------- | | 0 | 0.0554 | 0.047 | | 1 | 0.044 | 0.0472 | | 2 | 0.0374 | 0.0425 | | 3 | 0.0322 | 0.041 | | 4 | 0.0278 | 0.0403 | | 5 | 0.0246 | 0.0389 | | 6 | 0.0215 | 0.0389 | | 7 | 0.0192 | 0.0388 | | 8 | 0.017 | 0.0379 | | 9 | 0.0154 | 0.0375 | | 10 | 0.0142 | 0.0381 | | 11 | 0.0132 | 0.0372 | | 12 | 0.0126 | 0.0377 | | 13 | 0.012 | 0.0377 | ## Evaluation results | Epoch | top_1 | top_3 | top_5 | top_10 | top_25 | | ----- | ----- | ----- | ----- | ----- | ----- | | 0 | 0.373 | 0.476 | 0.509 | 0.544 | 0.573 | | 1 | 0.362 | 0.466 | 0.501 | 0.537 | 0.568 | | 2 | 0.371 | 0.476 | 0.511 | 0.546 | 0.576 | | 3 | 0.369 | 0.473 | 0.506 | 0.54 | 0.569 | | 4 | 0.373 | 0.478 | 0.512 | 0.547 | 0.578 | | 5 | 0.378 | 0.483 | 0.517 | 0.552 | 0.58 | | 6 | 0.371 | 0.475 | 0.509 | 0.543 | 0.571 | | 7 | 0.379 | 0.484 | 0.517 | 0.55 | 0.578 | | 8 | 0.378 | 0.482 | 0.515 | 0.548 | 0.575 | | 9 | 0.383 | 0.489 | 0.523 | 0.556 | 0.584 | | 10 | 0.38 | 0.483 | 0.517 | 0.549 | 0.575 | | 11 | 0.38 | 0.485 | 0.518 | 0.551 | 0.577 | | 12 | 0.383 | 0.489 | 0.522 | 0.556 | 0.582 | | 13 | 0.385 | 0.49 | 0.523 | 0.555 | 0.581 | ## Framework versions - Transformers: 4.25.1 - PyTorch: 2.0.0.dev20230210+cu118 - PyTorch Lightning: 1.8.6 - Datasets: 2.7.1 - Tokenizers: 0.13.1 - Sentence Transformers: 2.2.2 ## Additional Information This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Retrieval-Augmented-QA).