tuan.ljn
commited on
Commit
·
2125f48
1
Parent(s):
56ed2d3
Add: commit model
Browse files- .ipynb_checkpoints/README-checkpoint.md +100 -0
- 1_Pooling/config.json +10 -0
- README.md +100 -3
- config.json +37 -0
- config_sentence_transformers.json +9 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer_config.json +62 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
- sentence-embedding
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- fr
|
13 |
+
metrics:
|
14 |
+
- pearsonr
|
15 |
+
- spearmanr
|
16 |
+
---
|
17 |
+
|
18 |
+
# [bilingual-embedding-large](https://huggingface.co/Lajavaness/bilingual-embedding-large)
|
19 |
+
|
20 |
+
bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [BGE M3](https://huggingface.co/BAAI/bge-m3), a pre-trained language model larged on the [BGE M3](https://huggingface.co/BAAI/bge-m3) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
|
21 |
+
|
22 |
+
|
23 |
+
## Full Model Architecture
|
24 |
+
```
|
25 |
+
SentenceTransformer(
|
26 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
|
27 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
28 |
+
(2): Normalize()
|
29 |
+
)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Training and Fine-tuning process
|
33 |
+
#### Stage 1: NLI Training
|
34 |
+
- Dataset: [(SNLI+XNLI) for english+french]
|
35 |
+
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
|
36 |
+
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
|
37 |
+
- Dataset: [STSB-fr and en]
|
38 |
+
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
|
39 |
+
### Stage 4: Advanced Augmentation Fine-tuning
|
40 |
+
- Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
|
41 |
+
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
|
42 |
+
|
43 |
+
|
44 |
+
## Usage:
|
45 |
+
|
46 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
47 |
+
|
48 |
+
```
|
49 |
+
pip install -U sentence-transformers
|
50 |
+
```
|
51 |
+
|
52 |
+
Then you can use the model like this:
|
53 |
+
|
54 |
+
```python
|
55 |
+
from sentence_transformers import SentenceTransformer
|
56 |
+
from pyvi.ViTokenizer import tokenize
|
57 |
+
|
58 |
+
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
|
59 |
+
|
60 |
+
model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)
|
61 |
+
print(embeddings)
|
62 |
+
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
## Evaluation
|
70 |
+
|
71 |
+
TODO
|
72 |
+
|
73 |
+
## Citation
|
74 |
+
@article{chen2024bge,
|
75 |
+
title={Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation},
|
76 |
+
author={Chen, Jianlv and Xiao, Shitao and Zhang, Peitian and Luo, Kun and Lian, Defu and Liu, Zheng},
|
77 |
+
journal={arXiv preprint arXiv:2402.03216},
|
78 |
+
year={2024}
|
79 |
+
}
|
80 |
+
|
81 |
+
@article{conneau2019unsupervised,
|
82 |
+
title={Unsupervised cross-lingual representation learning at scale},
|
83 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
84 |
+
journal={arXiv preprint arXiv:1911.02116},
|
85 |
+
year={2019}
|
86 |
+
}
|
87 |
+
|
88 |
+
@article{reimers2019sentence,
|
89 |
+
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
|
90 |
+
author={Nils Reimers, Iryna Gurevych},
|
91 |
+
journal={https://arxiv.org/abs/1908.10084},
|
92 |
+
year={2019}
|
93 |
+
}
|
94 |
+
|
95 |
+
@article{thakur2020augmented,
|
96 |
+
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
|
97 |
+
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
|
98 |
+
journal={arXiv e-prints},
|
99 |
+
pages={arXiv--2010},
|
100 |
+
year={2020}
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,100 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
- sentence-embedding
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- fr
|
13 |
+
metrics:
|
14 |
+
- pearsonr
|
15 |
+
- spearmanr
|
16 |
+
---
|
17 |
+
|
18 |
+
# [bilingual-embedding-large](https://huggingface.co/Lajavaness/bilingual-embedding-large)
|
19 |
+
|
20 |
+
bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [BGE M3](https://huggingface.co/BAAI/bge-m3), a pre-trained language model larged on the [BGE M3](https://huggingface.co/BAAI/bge-m3) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
|
21 |
+
|
22 |
+
|
23 |
+
## Full Model Architecture
|
24 |
+
```
|
25 |
+
SentenceTransformer(
|
26 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
|
27 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
28 |
+
(2): Normalize()
|
29 |
+
)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Training and Fine-tuning process
|
33 |
+
#### Stage 1: NLI Training
|
34 |
+
- Dataset: [(SNLI+XNLI) for english+french]
|
35 |
+
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
|
36 |
+
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
|
37 |
+
- Dataset: [STSB-fr and en]
|
38 |
+
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
|
39 |
+
### Stage 4: Advanced Augmentation Fine-tuning
|
40 |
+
- Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
|
41 |
+
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
|
42 |
+
|
43 |
+
|
44 |
+
## Usage:
|
45 |
+
|
46 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
47 |
+
|
48 |
+
```
|
49 |
+
pip install -U sentence-transformers
|
50 |
+
```
|
51 |
+
|
52 |
+
Then you can use the model like this:
|
53 |
+
|
54 |
+
```python
|
55 |
+
from sentence_transformers import SentenceTransformer
|
56 |
+
from pyvi.ViTokenizer import tokenize
|
57 |
+
|
58 |
+
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
|
59 |
+
|
60 |
+
model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)
|
61 |
+
print(embeddings)
|
62 |
+
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
## Evaluation
|
70 |
+
|
71 |
+
TODO
|
72 |
+
|
73 |
+
## Citation
|
74 |
+
@article{chen2024bge,
|
75 |
+
title={Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation},
|
76 |
+
author={Chen, Jianlv and Xiao, Shitao and Zhang, Peitian and Luo, Kun and Lian, Defu and Liu, Zheng},
|
77 |
+
journal={arXiv preprint arXiv:2402.03216},
|
78 |
+
year={2024}
|
79 |
+
}
|
80 |
+
|
81 |
+
@article{conneau2019unsupervised,
|
82 |
+
title={Unsupervised cross-lingual representation learning at scale},
|
83 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
84 |
+
journal={arXiv preprint arXiv:1911.02116},
|
85 |
+
year={2019}
|
86 |
+
}
|
87 |
+
|
88 |
+
@article{reimers2019sentence,
|
89 |
+
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
|
90 |
+
author={Nils Reimers, Iryna Gurevych},
|
91 |
+
journal={https://arxiv.org/abs/1908.10084},
|
92 |
+
year={2019}
|
93 |
+
}
|
94 |
+
|
95 |
+
@article{thakur2020augmented,
|
96 |
+
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
|
97 |
+
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
|
98 |
+
journal={arXiv e-prints},
|
99 |
+
pages={arXiv--2010},
|
100 |
+
year={2020}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "dangvantuan/bilingual_impl",
|
3 |
+
"architectures": [
|
4 |
+
"BilingualModel"
|
5 |
+
],
|
6 |
+
"model_type": "bilingual",
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig":"dangvantuan/bilingual_impl--config.BilingualConfig",
|
9 |
+
"AutoModel": "dangvantuan/bilingual_impl--modeling.BilingualModel",
|
10 |
+
"AutoModelForMaskedLM": "dangvantuan/bilingual_impl--modeling.BilingualForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "dangvantuan/bilingual_impl--modeling.BilingualForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "dangvantuan/bilingual_impl--modeling.BilingualForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "dangvantuan/bilingual_impl--modeling.BilingualForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "dangvantuan/bilingual_impl--modeling.BilingualForTokenClassification"
|
15 |
+
},
|
16 |
+
"attention_probs_dropout_prob": 0.1,
|
17 |
+
"classifier_dropout": null,
|
18 |
+
"bos_token_id": 0,
|
19 |
+
"eos_token_id": 2,
|
20 |
+
"hidden_act": "gelu",
|
21 |
+
"hidden_dropout_prob": 0.1,
|
22 |
+
"hidden_size": 1024,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 4096,
|
25 |
+
"layer_norm_eps": 1e-05,
|
26 |
+
"max_position_embeddings": 8194,
|
27 |
+
"num_attention_heads": 16,
|
28 |
+
"num_hidden_layers": 24,
|
29 |
+
"output_past": true,
|
30 |
+
"pad_token_id": 1,
|
31 |
+
"position_embedding_type": "absolute",
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.38.2",
|
34 |
+
"type_vocab_size": 1,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 250002
|
37 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.6.1",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62c57a7185eefb9ad3648fb4a93e334ffa6ffcffa8247386c38e4c705d4a8449
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 500,
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"sp_model_kwargs": {},
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|