tuan.ljn commited on
Commit
2125f48
·
1 Parent(s): 56ed2d3

Add: commit model

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ - sentence-embedding
10
+ license: apache-2.0
11
+ language:
12
+ - fr
13
+ metrics:
14
+ - pearsonr
15
+ - spearmanr
16
+ ---
17
+
18
+ # [bilingual-embedding-large](https://huggingface.co/Lajavaness/bilingual-embedding-large)
19
+
20
+ bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [BGE M3](https://huggingface.co/BAAI/bge-m3), a pre-trained language model larged on the [BGE M3](https://huggingface.co/BAAI/bge-m3) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
21
+
22
+
23
+ ## Full Model Architecture
24
+ ```
25
+ SentenceTransformer(
26
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
27
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
28
+ (2): Normalize()
29
+ )
30
+ ```
31
+
32
+ ## Training and Fine-tuning process
33
+ #### Stage 1: NLI Training
34
+ - Dataset: [(SNLI+XNLI) for english+french]
35
+ - Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
36
+ ### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
37
+ - Dataset: [STSB-fr and en]
38
+ - Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
39
+ ### Stage 4: Advanced Augmentation Fine-tuning
40
+ - Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
41
+ - Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
42
+
43
+
44
+ ## Usage:
45
+
46
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
47
+
48
+ ```
49
+ pip install -U sentence-transformers
50
+ ```
51
+
52
+ Then you can use the model like this:
53
+
54
+ ```python
55
+ from sentence_transformers import SentenceTransformer
56
+ from pyvi.ViTokenizer import tokenize
57
+
58
+ sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
59
+
60
+ model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)
61
+ print(embeddings)
62
+
63
+ ```
64
+
65
+
66
+
67
+
68
+
69
+ ## Evaluation
70
+
71
+ TODO
72
+
73
+ ## Citation
74
+ @article{chen2024bge,
75
+ title={Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation},
76
+ author={Chen, Jianlv and Xiao, Shitao and Zhang, Peitian and Luo, Kun and Lian, Defu and Liu, Zheng},
77
+ journal={arXiv preprint arXiv:2402.03216},
78
+ year={2024}
79
+ }
80
+
81
+ @article{conneau2019unsupervised,
82
+ title={Unsupervised cross-lingual representation learning at scale},
83
+ author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
84
+ journal={arXiv preprint arXiv:1911.02116},
85
+ year={2019}
86
+ }
87
+
88
+ @article{reimers2019sentence,
89
+ title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
90
+ author={Nils Reimers, Iryna Gurevych},
91
+ journal={https://arxiv.org/abs/1908.10084},
92
+ year={2019}
93
+ }
94
+
95
+ @article{thakur2020augmented,
96
+ title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
97
+ author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
98
+ journal={arXiv e-prints},
99
+ pages={arXiv--2010},
100
+ year={2020}
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,100 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ - sentence-embedding
10
+ license: apache-2.0
11
+ language:
12
+ - fr
13
+ metrics:
14
+ - pearsonr
15
+ - spearmanr
16
+ ---
17
+
18
+ # [bilingual-embedding-large](https://huggingface.co/Lajavaness/bilingual-embedding-large)
19
+
20
+ bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [BGE M3](https://huggingface.co/BAAI/bge-m3), a pre-trained language model larged on the [BGE M3](https://huggingface.co/BAAI/bge-m3) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
21
+
22
+
23
+ ## Full Model Architecture
24
+ ```
25
+ SentenceTransformer(
26
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
27
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
28
+ (2): Normalize()
29
+ )
30
+ ```
31
+
32
+ ## Training and Fine-tuning process
33
+ #### Stage 1: NLI Training
34
+ - Dataset: [(SNLI+XNLI) for english+french]
35
+ - Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
36
+ ### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
37
+ - Dataset: [STSB-fr and en]
38
+ - Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
39
+ ### Stage 4: Advanced Augmentation Fine-tuning
40
+ - Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
41
+ - Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
42
+
43
+
44
+ ## Usage:
45
+
46
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
47
+
48
+ ```
49
+ pip install -U sentence-transformers
50
+ ```
51
+
52
+ Then you can use the model like this:
53
+
54
+ ```python
55
+ from sentence_transformers import SentenceTransformer
56
+ from pyvi.ViTokenizer import tokenize
57
+
58
+ sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
59
+
60
+ model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)
61
+ print(embeddings)
62
+
63
+ ```
64
+
65
+
66
+
67
+
68
+
69
+ ## Evaluation
70
+
71
+ TODO
72
+
73
+ ## Citation
74
+ @article{chen2024bge,
75
+ title={Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation},
76
+ author={Chen, Jianlv and Xiao, Shitao and Zhang, Peitian and Luo, Kun and Lian, Defu and Liu, Zheng},
77
+ journal={arXiv preprint arXiv:2402.03216},
78
+ year={2024}
79
+ }
80
+
81
+ @article{conneau2019unsupervised,
82
+ title={Unsupervised cross-lingual representation learning at scale},
83
+ author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
84
+ journal={arXiv preprint arXiv:1911.02116},
85
+ year={2019}
86
+ }
87
+
88
+ @article{reimers2019sentence,
89
+ title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
90
+ author={Nils Reimers, Iryna Gurevych},
91
+ journal={https://arxiv.org/abs/1908.10084},
92
+ year={2019}
93
+ }
94
+
95
+ @article{thakur2020augmented,
96
+ title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
97
+ author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
98
+ journal={arXiv e-prints},
99
+ pages={arXiv--2010},
100
+ year={2020}
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "dangvantuan/bilingual_impl",
3
+ "architectures": [
4
+ "BilingualModel"
5
+ ],
6
+ "model_type": "bilingual",
7
+ "auto_map": {
8
+ "AutoConfig":"dangvantuan/bilingual_impl--config.BilingualConfig",
9
+ "AutoModel": "dangvantuan/bilingual_impl--modeling.BilingualModel",
10
+ "AutoModelForMaskedLM": "dangvantuan/bilingual_impl--modeling.BilingualForMaskedLM",
11
+ "AutoModelForMultipleChoice": "dangvantuan/bilingual_impl--modeling.BilingualForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "dangvantuan/bilingual_impl--modeling.BilingualForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "dangvantuan/bilingual_impl--modeling.BilingualForSequenceClassification",
14
+ "AutoModelForTokenClassification": "dangvantuan/bilingual_impl--modeling.BilingualForTokenClassification"
15
+ },
16
+ "attention_probs_dropout_prob": 0.1,
17
+ "classifier_dropout": null,
18
+ "bos_token_id": 0,
19
+ "eos_token_id": 2,
20
+ "hidden_act": "gelu",
21
+ "hidden_dropout_prob": 0.1,
22
+ "hidden_size": 1024,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 4096,
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 8194,
27
+ "num_attention_heads": 16,
28
+ "num_hidden_layers": 24,
29
+ "output_past": true,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "float16",
33
+ "transformers_version": "4.38.2",
34
+ "type_vocab_size": 1,
35
+ "use_cache": true,
36
+ "vocab_size": 250002
37
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.6.1",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c57a7185eefb9ad3648fb4a93e334ffa6ffcffa8247386c38e4c705d4a8449
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 500,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }