swang23 commited on
Commit
ceb8776
·
verified ·
1 Parent(s): 20ea9b5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -29
README.md CHANGED
@@ -1,29 +1,32 @@
1
- ### Train Dataset Means and stds
2
- lat_mean = 39.951572994535354
3
- lat_std = 0.0006556104083785816
4
- lon_mean = -75.19137012508818
5
- lon_std = 0.0006895844560639971
6
-
7
- ### Custom Model Class
8
- from transformers import ViTModel
9
- class ViTGPSModel(nn.Module):
10
- def __init__(self, output_size=2):
11
- super().__init__()
12
- self.vit = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
13
- self.regression_head = nn.Linear(self.vit.config.hidden_size, output_size)
14
-
15
- def forward(self, x):
16
- cls_embedding = self.vit(x).last_hidden_state[:, 0, :]
17
- return self.regression_head(cls_embedding)
18
-
19
- ### Running Inference
20
-
21
- model_path = hf_hub_download(repo_id="Latitude-Attitude/vit-gps-coordinates-predictor", filename="vit-gps-coordinates-predictor.pth")
22
- model = torch.load(model_path)
23
- model.eval()
24
-
25
- with torch.no_grad():
26
- for images in dataloader:
27
- images = images.to(device)
28
- outputs = model(images)
29
- preds = outputs.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
 
 
 
 
1
+ ### Train Dataset Means and stds
2
+ ```
3
+ lat_mean = 39.951572994535354
4
+ lat_std = 0.0006556104083785816
5
+ lon_mean = -75.19137012508818
6
+ lon_std = 0.0006895844560639971
7
+ ```
8
+ ### Custom Model Class
9
+ ```
10
+ from transformers import ViTModel
11
+ class ViTGPSModel(nn.Module):
12
+ def __init__(self, output_size=2):
13
+ super().__init__()
14
+ self.vit = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
15
+ self.regression_head = nn.Linear(self.vit.config.hidden_size, output_size)
16
+
17
+ def forward(self, x):
18
+ cls_embedding = self.vit(x).last_hidden_state[:, 0, :]
19
+ return self.regression_head(cls_embedding)
20
+ ```
21
+ ### Running Inference
22
+ ```
23
+ model_path = hf_hub_download(repo_id="Latitude-Attitude/vit-gps-coordinates-predictor", filename="vit-gps-coordinates-predictor.pth")
24
+ model = torch.load(model_path)
25
+ model.eval()
26
+
27
+ with torch.no_grad():
28
+ for images in dataloader:
29
+ images = images.to(device)
30
+ outputs = model(images)
31
+ preds = outputs.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
32
+ ```