Train Dataset Means and stds
```
lat_mean = 39.951648580775
lat_std = 0.0006491166433423773
lon_mean = -75.19144282374886
lon_std = 0.0006635364490202568
```
Custom Class Model
```
from transformers import ViTModel
class ViTGPSModel(nn.Module):
def __init__(self, output_size=2):
super().__init__()
self.vit = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
self.regression_head = nn.Linear(self.vit.config.hidden_size, output_size)
def forward(self, x):
cls_embedding = self.vit(x).last_hidden_state[:, 0, :]
return self.regression_head(cls_embedding)
```
Running Inference
```
model_path = hf_hub_download(repo_id="Latitude-Attitude/vit-gps-coordinates-predictor-with-filter", filename="vit-gps-coordinates-predictor-with-filter-6.pth")
model = torch.load(model_path)
model.eval()
with torch.no_grad():
for images in dataloader:
images = images.to(device)
outputs = model(images)
preds = outputs.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
```