import torch from transformers import AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer from nemo.collections.nlp.models.language_modeling.megatron_t5_model import MegatronT5Model from nemo.collections.nlp.data.language_modeling.megatron.ul2_dataset import UL2Dataset from pytorch_lightning.trainer.trainer import Trainer def load_nemo_megatron_model(checkpoint_path, devices=1, num_nodes=1, accelerator="gpu"): trainer = Trainer(devices=devices, num_nodes=num_nodes, accelerator=accelerator) model = MegatronT5Model.load_from_checkpoint(checkpoint_path, trainer=trainer) return model #### Huggingface #### tokenizer = AutoTokenizer.from_pretrained("ul2-base-nl36-swedish") model = T5ForConditionalGeneration.from_pretrained("ul2-base-nl36-swedish") # "Hunden bet mannen i" means "The dog bit the man in". input_ids = tokenizer( " Hunden bet mannen i ", return_tensors="pt", return_token_type_ids=False ) # Predict with HF with torch.no_grad(): outputs_hf = model( input_ids=input_ids.input_ids, attention_mask=input_ids.attention_mask, decoder_input_ids=input_ids.input_ids, decoder_attention_mask=input_ids.attention_mask, ) # Argmax to get the most probable token id output_tokens_hf = outputs_hf[0].argmax(dim=-1) #### Nemo #### model_nemo = load_nemo_megatron_model("nemo_checkpoints/megatron_ul2--val_loss=2.54-step=7000-consumed_samples=14557920.0.ckpt") model_nemo.eval() tokenizer_nemo = model_nemo.tokenizer.tokenizer input_ids_nemo = tokenizer_nemo(" Hunden bet mannen i ", return_tensors="pt").to("cuda") # Predict with Nemo with torch.no_grad(): outputs_nemo = model_nemo( encoder_input_ids=input_ids_nemo.input_ids, decoder_input_ids=input_ids_nemo.input_ids, encoder_attn_mask=input_ids_nemo.attention_mask, decoder_attn_mask=input_ids_nemo.attention_mask, ) # Argmax to get the most probable token output_tokens = outputs_nemo.argmax(dim=-1) #### Compare both outputs #### print(f"Nemo logits: {outputs_nemo[0]}") print(f"Huggingface logits: {outputs_hf[0]}") print(f"Are logits equal: {torch.allclose(outputs_nemo[0], outputs_hf[0].to('cuda'))}") # Decode tokens print(f"Huggingface output: {tokenizer.batch_decode(output_tokens_hf)}") print(f"Nemo output: {tokenizer_nemo.batch_decode(output_tokens)}") # Reasonable output for undertrained model