w11wo commited on
Commit
80e9fa3
·
1 Parent(s): 51ad0b4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - bleu
7
+ model-index:
8
+ - name: indo-t5-base
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # indo-t5-base
16
+
17
+ This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5657
20
+ - Bleu: 3.9838
21
+ - Gen Len: 18.8778
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0008
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 8
46
+ - gradient_accumulation_steps: 16
47
+ - total_train_batch_size: 4096
48
+ - total_eval_batch_size: 128
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - training_steps: 5000
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
58
+ | 1.5774 | 7.64 | 1000 | 1.5461 | 3.3312 | 18.8762 |
59
+ | 1.137 | 15.28 | 2000 | 1.4426 | 3.8148 | 18.8755 |
60
+ | 0.9109 | 22.92 | 3000 | 1.4754 | 3.9571 | 18.8752 |
61
+ | 0.7807 | 30.56 | 4000 | 1.5373 | 3.9767 | 18.8761 |
62
+ | 0.7288 | 38.2 | 5000 | 1.5657 | 3.9838 | 18.8778 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.27.1
68
+ - Pytorch 2.0.0+cu117
69
+ - Datasets 2.9.0
70
+ - Tokenizers 0.13.2