--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 63 | 3.4355 | | No log | 2.0 | 126 | 2.6230 | | No log | 3.0 | 189 | 1.8876 | | No log | 4.0 | 252 | 1.6358 | | No log | 5.0 | 315 | 1.5591 | | No log | 6.0 | 378 | 1.5578 | | No log | 7.0 | 441 | 1.5629 | | 1.9367 | 8.0 | 504 | 1.5743 | | 1.9367 | 9.0 | 567 | 1.5862 | | 1.9367 | 10.0 | 630 | 1.5971 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0