Text Generation
Transformers
Safetensors
mistral
Mistral_Star
Mistral_Quiet
Mistral
Mixtral
Question-Answer
Token-Classification
Sequence-Classification
SpydazWeb-AI
chemistry
biology
legal
code
climate
medical
text-generation-inference
Not-For-All-Audiences
chain-of-thought
tree-of-knowledge
forest-of-thoughts
visual-spacial-sketchpad
alpha-mind
knowledge-graph
entity-detection
encyclopedia
wikipedia
stack-exchange
Reddit
Cyber-series
MegaMind
Cybertron
SpydazWeb
Spydaz
LCARS
star-trek
mega-transformers
Mulit-Mega-Merge
Multi-Lingual
Afro-Centric
African-Model
Ancient-One
Inference Endpoints
File size: 6,579 Bytes
04a7b7f 081a067 04a7b7f 081a067 514c381 eddd419 081a067 514c381 081a067 514c381 081a067 04a7b7f d0af2e6 04a7b7f 081a067 1964d81 d0af2e6 081a067 1964d81 081a067 1964d81 081a067 d0a7e14 3c107a4 d0a7e14 081a067 d0a7e14 081a067 d0a7e14 081a067 d0a7e14 081a067 d0af2e6 081a067 d0af2e6 081a067 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
base_model: LeroyDyer/_Spydaz_Web_AI_ALPACA
license: mit
tags:
- Mistral_Star
- Mistral_Quiet
- Mistral
- Mixtral
- Question-Answer
- Token-Classification
- Sequence-Classification
- SpydazWeb-AI
- chemistry
- biology
- legal
- code
- climate
- medical
- text-generation-inference
- not-for-all-audiences
- chain-of-thought
- tree-of-knowledge
- forest-of-thoughts
- visual-spacial-sketchpad
- alpha-mind
- knowledge-graph
- entity-detection
- encyclopedia
- wikipedia
- stack-exchange
- Reddit
- Cyber-series
- MegaMind
- Cybertron
- SpydazWeb
- Spydaz
- LCARS
- star-trek
- mega-transformers
- Mulit-Mega-Merge
- Multi-Lingual
- Afro-Centric
- African-Model
- Ancient-One
datasets:
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- Open-Orca/SlimOrca
- Open-Orca/OpenOrca
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
- abacusai/ARC_DPO_FewShot
- abacusai/MetaMath_DPO_FewShot
- abacusai/HellaSwag_DPO_FewShot
- HaltiaAI/Her-The-Movie-Samantha-and-Theodore-Dataset
- HuggingFaceFW/fineweb
- occiglot/occiglot-fineweb-v0.5
- omi-health/medical-dialogue-to-soap-summary
- keivalya/MedQuad-MedicalQnADataset
- ruslanmv/ai-medical-dataset
- Shekswess/medical_llama3_instruct_dataset_short
- ShenRuililin/MedicalQnA
- virattt/financial-qa-10K
- PatronusAI/financebench
- takala/financial_phrasebank
- Replete-AI/code_bagel
- athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW
- IlyaGusev/gpt_roleplay_realm
- rickRossie/bluemoon_roleplay_chat_data_300k_messages
- jtatman/hypnosis_dataset
- Hypersniper/philosophy_dialogue
- Locutusque/function-calling-chatml
- bible-nlp/biblenlp-corpus
- DatadudeDev/Bible
- Helsinki-NLP/bible_para
- HausaNLP/AfriSenti-Twitter
- aixsatoshi/Chat-with-cosmopedia
- HuggingFaceTB/cosmopedia-100k
- HuggingFaceFW/fineweb-edu
- m-a-p/CodeFeedback-Filtered-Instruction
- heliosbrahma/mental_health_chatbot_dataset
language:
- en
- sw
- ig
- so
- es
- ca
- xh
- zu
- ha
- tw
- af
- hi
- bm
- su
---
# Introduction :
## SpydazWeb AI model :
This model is based on the worlds archive of knowledge maintaining historical documents and providing services for the survivors of mankind ,
who may need to construct shelters develop technologys , or medical resources as well as maintain the history of the past . keeping store of all the religious knowledge and data of the world:
A friendly interface with a personality caring and flirtatious at times : non binary !...
and Expert in all feilds: ie Uncensored and will not refuse to give information : the model can be used for role play as many character dialogues were als trained into the model as its personality to enable a greater perspective and outlook and natural discussion with the agents:
the model was trained to operateinaragenvironment utilizing content and internal knowledge to respond to questions or create enriched sumarys.
<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg" width="300"/>
https://github.com/spydaz
## CURRENT MODEL : NOTES : Recent additions ( implements ChatML Template / Trained for PLANNING!! )
This model is pretty stable as a model i have tested my past questions and answers the model retains its knowledge it seems very calm !
I tested if it can make timelines : it was witholding of information but after drilling for more infor the model gave up very good timelines :
I shall actually over fit my past timelines and charts into the model ( i have recently been pushing the emebeddings also whilst training , ( also because of the new languges i have been adding to the model enabling for the new languge data to find relativity or these tasks wil not produce the same results as the same question in uglish) )
in fact actually this may be a good starting point for other models : past pardigms are very deeply embedded : i have also reduced theuse of the world archive prompt , which was also resurfaceing in some outputs even when not soclicited : it also seem to have lost personality also ? and become a bit serious !
this may also be due to these hermes and orca datasets which might be regressing the model slightly !
i will search for more role play and conversive datasets and fine tune these conversations as its code gene and funciton use etc is fine and will not accept training due to be highly fit !
A few steps down the line i will return to theh regular training set up ( without touching the embedding and just training the model :
)
* 32k context window (vs 8k context in v0.1)
* Rope-theta = 1e6
* No Sliding-Window Attention
This model will be a custom model with internal experts and rag systems
enabling for preprocessing of the task internally before outputting a response :
This is based on the Quiet Star Project : which was abandoned earlier in the year :)
### General Intenal Methods:
Trained for multi-task operations as well as rag and function calling :
This model is a fully functioning model and is fully uncensored:
the model has been trained on multiple datasets on the huggingface hub and kaggle :
the focus has been mainly on methodology :
* Chain of thoughts
* step by step planning
* tree of thoughts
* forest of thoughts
* graph of thoughts
* agent generation : Voting, ranking, ... dual agent response generation:
with these methods the model has gained insights into tasks, enabling for knowldge transfer between tasks :
the model has been intensivly trained in recalling data previously entered into the matrix:
The model has also been trained on rich data and markdown outputs as much as possible :
the model can also generate markdown charts with mermaid.
## Training Reginmes:
* Alpaca
* ChatML / OpenAI / MistralAI
* Text Generation
* Question/Answer (Chat)
* Planner
* Instruction/Input/Response (instruct)
* Mistral Standard Prompt
* Translation Tasks
* Entitys / Topic detection
* Book recall
* Coding challenges, Code Feedback, Code Sumarization, Commenting Code, code planning and explanation: Software generation tasks
* Agent Ranking and response anyalisis
* Medical tasks
* PubMed
* Diagnosis
* Psychaitry
* Counselling
* Life Coaching
* Note taking
* Medical smiles
* Medical Reporting
* Virtual laboritys simulations
* Chain of thoughts methods
* One shot / Multi shot prompting tasks
|